Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kouji Matsumoto is active.

Publication


Featured researches published by Kouji Matsumoto.


Molecular Microbiology | 2006

Lipid domains in bacterial membranes

Kouji Matsumoto; Jin Kusaka; Ayako Nishibori; Hiroshi Hara

The recent development of specific probes for lipid molecules has led to the discovery of lipid domains in bacterial membranes, that is, of membrane areas differing in lipid composition. A view of the membrane as a patchwork is replacing the assumption of lipid homogeneity inherent in the fluid mosaic model of Singer and Nicolson (Science 1972, 175: 720–731). If thus membranes have complex lipid structure, questions arise about how it is generated and maintained, and what its function might be. How do lipid domains relate to the functionally distinct regions in bacterial cells as they are identified by protein localization techniques? This review assesses the current knowledge on the existence of cardiolipin (CL) and phosphatidylethanolamine (PE) domains in bacterial cell membranes and on the specific cellular localization of certain membrane proteins, which include phospholipid synthases, and discusses possible mechanisms, both chemical and physiological, for the formation of the lipid domains. We propose that bacterial membranes contain a mosaic of microdomains of CL and PE, which are to a significant extent self‐assembled according to their respective intrinsic chemical characteristics. We extend the discussion to the possible relevance of the domains to specific cellular processes, including cell division and sporulation.


Journal of Bacteriology | 2004

Cardiolipin Domains in Bacillus subtilis Marburg Membranes

Fumitaka Kawai; Momoko Shoda; Rie Harashima; Yoshito Sadaie; Hiroshi Hara; Kouji Matsumoto

Recently, use of the cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) revealed CL-rich domains in the Escherichia coli membrane (E. Mileykovskaya and W. Dowhan, J. Bacteriol. 182: 1172-1175, 2000). Staining of Bacillus subtilis cells with NAO showed that there were green fluorescence domains in the septal regions and at the poles. These fluorescence domains were scarcely detectable in exponentially growing cells of the clsA-disrupted mutant lacking detectable CL. In sporulating cells with a wild-type lipid composition, fluorescence domains were observed in the polar septa and on the engulfment and forespore membranes. Both in the clsA-disrupted mutant and in a mutant with disruptions in all three of the paralogous genes (clsA, ywjE, and ywiE) for CL synthase, these domains did not vanish but appeared later, after sporulation initiation. A red shift in the fluorescence due to stacking of two dye molecules and the lipid composition suggested that a small amount of CL was present in sporulating cells of the mutants. Mass spectrometry analyses revealed the presence of CL in these mutant cells. At a later stage during sporulation of the mutants the frequency of heat-resistant cells that could form colonies after heat treatment was lower. The frequency of sporulation of these cells at 24 h after sporulation initiation was 30 to 50% of the frequency of the wild type. These results indicate that CL-rich domains are present in the polar septal membrane and in the engulfment and forespore membranes during the sporulation phase even in a B. subtilis mutant with disruptions in all three paralogous genes, as well as in the membranes of the medial septa and at the poles during the exponential growth phase of wild-type cells. The results further suggest that the CL-rich domains in the polar septal membrane and engulfment and forespore membranes are involved in sporulation.


Journal of Bacteriology | 2005

Phosphatidylethanolamine Domains and Localization of Phospholipid Synthases in Bacillus subtilis Membranes

Ayako Nishibori; Jin Kusaka; Hiroshi Hara; Masato Umeda; Kouji Matsumoto

Application of the cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange has recently revealed CL-rich domains in the septal regions and at the poles of the Bacillus subtilis membrane (F. Kawai, M. Shoda, R. Harashima, Y. Sadaie, H. Hara, and K. Matsumoto, J. Bacteriol. 186:1475-1483, 2004). This finding prompted us to examine the localization of another phospholipid, phosphatidylethanolamine (PE), with the cyclic peptide probe, Ro09-0198 (Ro), that binds specifically to PE. Treatment with biotinylated Ro followed by tetramethyl rhodamine-conjugated streptavidin revealed that PE is localized in the septal membranes of vegetative cells and in the membranes of the polar septum and the engulfment membranes of sporulating cells. When the mutant cells of the strains SDB01 (psd1::neo) and SDB02 (pssA10::spc), which both lack PE, were examined under the same conditions, no fluorescence was observed. The localization of the fluorescence thus evidently reflected the localization of PE-rich domains in the septal membranes. Similar PE-rich domains were observed in the septal regions of the cells of many Bacillus species. In Escherichia coli cells, however, no PE-rich domains were found. Green fluorescent protein fusions to the enzymes that catalyze the committed steps in PE synthesis, phosphatidylserine synthase, and in CL synthesis, CL synthase and phosphatidylglycerophosphate synthase, were localized mainly in the septal membranes in B. subtilis cells. The majority of the lipid synthases were also localized in the septal membranes; this includes 1-acyl-glycerol-3-phosphate acyltransferase, CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, diacylglycerol kinase, glucolipid synthase, and lysylphosphatidylglycerol synthase. These results suggest that phospholipids are produced mostly in the septal membranes and that CL and PE are kept from diffusing out to lateral ones.


Journal of Bacteriology | 2000

Viability of an Escherichia coli pgsA Null Mutant Lacking Detectable Phosphatidylglycerol and Cardiolipin

Shin Kikuchi; Isao Shibuya; Kouji Matsumoto

Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, has been considered to play specific roles in various cellular processes and is believed to be essential for cell viability. It is functionally replaced in some cases by cardiolipin, another abundant acidic phospholipid derived from phosphatidylglycerol. However, we now show that a null pgsA mutant is viable, if the major outer membrane lipoprotein is deficient. The pgsA gene normally encodes phosphatidylglycerophosphate synthase that catalyzes the committed step in the biosynthesis of these acidic phospholipids. In the mutant, the activity of this enzyme and both phosphatidylglycerol and cardiolipin were not detected (less than 0.01% of total phospholipid, both below the detection limit), although phosphatidic acid, an acidic biosynthetic precursor, accumulated (4.0%). Nonetheless, the null mutant grew almost normally in rich media. In low-osmolarity media and minimal media, however, it could not grow. It did not grow at temperatures over 40 degrees C, explaining the previous inability to construct a null pgsA mutant (W. Xia and W. Dowhan, Proc. Natl. Acad. Sci. USA 92:783-787, 1995). Phosphatidylglycerol and cardiolipin are therefore nonessential for cell viability or basic life functions. This notion allows us to formulate a working model that defines the physiological functions of acidic phospholipids in E. coli and explains the suppressing effect of lipoprotein deficiency.


Molecular Microbiology | 2001

Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids.

Kouji Matsumoto

The major anionic phospholipids of Escherichia coli, phosphatidylglycerol (PG) and cardiolipin (CL), have been considered to be indispensable for essential cellular functions, such as the initiation of DNA replication and translocation of proteins across the cytoplasmic membrane. However, we successfully constructed a null pgsA mutant of E. coli that had undetectable levels of PG and CL if the major outer membrane lipoprotein was deficient, clearly indicating that these anionic phospholipids are not indispensable. In the null mutant, we observed the accumulation of phosphatidic acid, an acidic biosynthetic precursor. This suggests a functionally substitutable nature of these anionic phospholipids and allows us to formulate a dual role model for the physiological roles of the anionic phospholipids in E. coli. The anionic phospholipids may play dual roles in E. coli as (i) substrates for head group‐specific enzyme reactions, albeit the viability of null PG mutants indicates that the products of head group‐specific reactions are not essential; and (ii) those that are replaceable, partly or entirely, by other phospholipids bearing net negative charges, because of their rather loose head group specificity. These two aspects of the physiological roles of anionic phospholipids are discussed with special reference to the phospholipids of other bacteria and eukaryotic organelles.


Molecular Biology of the Cell | 2009

Rec8 Guides Canonical Spo11 Distribution along Yeast Meiotic Chromosomes

Kazuto Kugou; Tomoyuki Fukuda; Shintaro Yamada; Masaru Ito; Hiroyuki Sasanuma; Saori Mori; Yuki Katou; Takehiko Itoh; Kouji Matsumoto; Takehiko Shibata; Katsuhiko Shirahige; Kunihiro Ohta

Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.


Biochimica et Biophysica Acta | 1997

PHOSPHATIDYLSERINE SYNTHASE FROM BACTERIA

Kouji Matsumoto

This review summarizes the characteristics of two subclasses of phosphatidylserine synthases: subclass I of gram-negative bacteria and subclass II of gram-positive bacteria. Unlike other phospholipid biosynthetic enzymes, the phosphatidylserine synthases of gram-negative bacteria, the enzyme from Escherichia coli has been extensively examined and characterized, are associated with the ribosomal fraction of cell lysates. Enzymes from gram-positive bacteria are membrane-bound, and the structural gene of membrane-bound synthase of Bacillus subtilis has been cloned and used in our laboratory for replacement with the E. coli counterpart. This review discusses the possible regulatory mechanisms of phosphatidylethanolamine synthesis in E. coli, which are closely related to the subcellular localization and properties of phosphatidylserine synthase, and highlights the cross-feedback regulatory model which assumes two forms of phosphatidylserine synthase (only molecules bound with acidic phospholipids of the membrane are active in phosphatidylserine synthesis, whereas others in the cytoplasm are latent). In addition, considerations of the origin and evolution of the two vastly different subclasses of phosphatidylserine synthases of bacteria are also presented.


Journal of Bacteriology | 2002

Envelope Disorder of Escherichia coli Cells Lacking Phosphatidylglycerol

Motoo Suzuki; Hiroshi Hara; Kouji Matsumoto

Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants.


Bioscience, Biotechnology, and Biochemistry | 2007

Reducing Sludge Production and the Domination of Comamonadaceae by Reducing the Oxygen Supply in the Wastewater Treatment Procedure of a Food-Processing Factory

Tamiko Sadaie; Aya Sadaie; Masao Takada; Keiichi Hamano; Jun-ichi Ohnishi; Niji Ohta; Kouji Matsumoto; Yoshito Sadaie

Sludge production was reduced remarkably by reducing the dissolved oxygen supply to less than 1 mg/l in the conventional wastewater treatment procedure of a food-processing factory that produced 180 m3 of wastewater of biochemical oxygen demand (BOD) of about 1,000 mg/l daily. DNA was extracted from the sludge and subjected to PCR amplification. The PCR product was cloned into a plasmid and sequenced. Estimation of the resident bacterial distribution by 16S rDNA sequences before and after improvement of the system suggested a remarkable gradual change in the major bacterial population from Anaerolinaeceae (15.6%) to Comamonadaceae (52.3%), members of denitrifying bacteria of Proteobacteria. Although we did not directly confirm the ability of denitrification of the resulting sludge, a change in the major final electron acceptors from oxygen to nitrate might explain the reduction in sludge production in a conventional activated sludge process when the oxygen supply was limitted.


Frontiers in Microbiology | 2015

The membrane: transertion as an organizing principle in membrane heterogeneity

Kouji Matsumoto; Hiroshi Hara; Itzhak Fishov; Eugenia Mileykovskaya; Vic Norris

The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid–lipid, protein–protein, and lipid–protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.

Collaboration


Dive into the Kouji Matsumoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge