Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kousaku Iwatsubo is active.

Publication


Featured researches published by Kousaku Iwatsubo.


Pharmacological Reviews | 2013

The Prostanoid EP4 Receptor and Its Signaling Pathway

Utako Yokoyama; Kousaku Iwatsubo; Masanari Umemura; Takayuki Fujita; Yoshihiro Ishikawa

The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein–coupled receptors. It was originally identified, similar to the EP2 receptor as a Gsα-coupled, adenylyl cyclase–stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to Giα, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.


Cardiovascular Research | 2001

Accumulation of molecules involved in α1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy

Takayuki Fujita; Yoshiyuki Toya; Kousaku Iwatsubo; Takeshi Onda; Kazuo Kimura; Satoshi Umemura; Yoshihiro Ishikawa

OBJECTIVE Caveolin, a major protein component of caveolae, is now considered to be an inhibitor of cellular growth and proliferation. In this study, we examined the localization of the molecules involved in alpha1-adrenergic receptor signal relative to that of caveolin in the heart and the changes in caveolin expression during the development of hypertrophy in SHR. METHODS We purified the caveolar protein fractions from rat cardiac tissues, H9C2 cells, and rat vascular smooth muscle cells. Using radioligand receptor binding assay and immunoblot analysis, we examined the distribution and the amount of alpha1-AR and caveolin. RESULTS Caveolin-3, the alpha1-adrenergic receptor, Gq and PLC-beta subtypes (PLC-beta1, -beta3) were found exclusively in the caveolar fraction in the above tissues. Caveolin-3 were co-immunoprecipitated with alpha1-adrenergic receptor and Gq from the cardiac tissues. The amount of caveolin subtypes expression (caveolin-1 and -3) and the amount of the alpha1-adrenergic receptor were examined in the hearts of SHR and age-matched WKY (4- and 24-weeks-old). The amount of caveolin-3 expression was significantly smaller in SHR at 24-weeks-old than that in SHR at 4-weeks-old and that in WKY at 24-weeks-old. CONCLUSIONS The molecules involved in alpha1-adrenergic signaling are confined to the same microdomain as caveolin. A decrease in caveolin-3 expression may play a role in the development of cardiac hypertrophy in SHR, presumably through de-regulating the inhibition of growth signal in the hearts of SHR in the hypertrophic stage.


Circulation | 2007

Disruption of Type 5 Adenylyl Cyclase Enhances Desensitization of Cyclic Adenosine Monophosphate Signal and Increases Akt Signal With Chronic Catecholamine Stress

Satoshi Okumura; Dorothy E. Vatner; Reiko Kurotani; Yunzhe Bai; Shumin Gao; Zengrong Yuan; Kousaku Iwatsubo; Coskun Ulucan; Jun-ichi Kawabe; Kaushik Ghosh; Stephen F. Vatner; Yoshihiro Ishikawa

Background— Desensitization of the cyclic adenosine monophosphate signal protects cardiac myocytes against catecholamine stress, thus preventing the development of apoptosis. Molecular mechanisms of desensitization have been well studied at the level of adrenergic receptors but less so at the level of the effector enzyme, adenylyl cyclase (AC). Methods and Results— When the effects of long-term (1 to 2 weeks) isoproterenol infusion were compared between type 5 AC-null mice (AC5KO) and wild-type controls, we found that the subsequent responses of left ventricular ejection fraction to sudden intravenous isoproterenol challenge were reduced in AC5KO compared with wild-type mice (ie, physiological desensitization was more effective in AC5KO), consistent with enhanced downregulation of AC catalytic activity in AC5KO. One mechanism for the less effective desensitization in wild-type mice was paradoxical upregulation of type 5 AC protein expression. The number of apoptotic myocytes was similar at baseline but was significantly less in AC5KO after infusion. This was accompanied by a 4-fold greater increase in Bcl-2 and a 3-fold greater increase in phospho-Akt in AC5KO. The latter is most likely mediated by increased membrane localization of phosphoinositide-dependent protein kinase 1, which is known to be inhibited by the cyclic adenosine monophosphate signal. Conclusions— The absence of type 5 AC results in more effective desensitization after long-term catecholamine stress and protects against the development of myocyte apoptosis and deterioration of cardiac function, potentially elucidating a novel approach to the therapy of heart failure.


PLOS ONE | 2014

Store-Operated Ca2+ Entry (SOCE) Regulates Melanoma Proliferation and Cell Migration

Masanari Umemura; Erdene Baljinnyam; Stefan Feske; Mariana S. De Lorenzo; Lai-Hua Xie; Xianfeng Feng; Kayoko Oda; Ayako Makino; Takayuki Fujita; Utako Yokoyama; Mizuka Iwatsubo; Suzie Chen; James S. Goydos; Yoshihiro Ishikawa; Kousaku Iwatsubo

Store-operated Ca2+ entry (SOCE) is a major mechanism of Ca2 + import from extracellular to intracellular space, involving detection of Ca2+ store depletion in endoplasmic reticulum (ER) by stromal interaction molecule (STIM) proteins, which then translocate to plasma membrane and activate Orai Ca2+ channels there. We found that STIM1 and Orai1 isoforms were abundantly expressed in human melanoma tissues and multiple melanoma/melanocyte cell lines. We confirmed that these cell lines exhibited SOCE, which was inhibited by knockdown of STIM1 or Orai1, or by a pharmacological SOCE inhibitor. Inhibition of SOCE suppressed melanoma cell proliferation and migration/metastasis. Induction of SOCE was associated with activation of extracellular-signal-regulated kinase (ERK), and was inhibited by inhibitors of calmodulin kinase II (CaMKII) or Raf-1, suggesting that SOCE-mediated cellular functions are controlled via the CaMKII/Raf-1/ERK signaling pathway. Our findings indicate that SOCE contributes to melanoma progression, and therefore may be a new potential target for treatment of melanoma, irrespective of whether or not Braf mutation is present.


Cancer Research | 2010

Exchange Protein Directly Activated by Cyclic AMP Increases Melanoma Cell Migration by a Ca2+-Dependent Mechanism

Erdene Baljinnyam; Mariana S. De Lorenzo; Lai-Hua Xie; Mizuka Iwatsubo; Suzie Chen; James S. Goydos; Martha C. Nowycky; Kousaku Iwatsubo

Melanoma has a poor prognosis due to its strong metastatic ability. Although Ca(2+) plays a major role in cell migration, little is known about the role of Ca(2+) in melanoma cell migration. We recently found that the exchange protein directly activated by cyclic AMP (Epac) increases melanoma cell migration via a heparan sulfate-related mechanism. In addition to this mechanism, we also found that Epac regulates melanoma cell migration by a Ca(2+)-dependent mechanism. An Epac agonist increased Ca(2+) in several different melanoma cell lines but not in melanocytes. Ablation of Epac1 with short hairpin RNA inhibited the Epac agonist-induced Ca(2+) elevation, suggesting the critical role of Epac1 in Ca(2+) homeostasis in melanoma cells. Epac-induced Ca(2+) elevation was negated by the inhibition of phospholipase C (PLC) and inositol triphosphate (IP(3)) receptor. Furthermore, Epac-induced cell migration was reduced by the inhibition of PLC or IP(3) receptor. These data suggest that Epac activates Ca(2+) release from the endoplasmic reticulum via the PLC/IP(3) receptor pathway, and this Ca(2+) elevation is involved in Epac-induced cell migration. Actin assembly was increased by Epac-induced Ca(2+), suggesting the involvement of actin in Epac-induced cell migration. In human melanoma specimens, mRNA expression of Epac1 was higher in metastatic melanoma than in primary melanoma, suggesting a role for Epac1 in melanoma metastasis. In conclusion, our findings reveal that Epac is a potential target for the suppression of melanoma cell migration, and, thus, the development of metastasis.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Adenylyl cyclase type 5 protein expression during cardiac development and stress

Che-Lin Hu; Rachna Chandra; Hui Ge; Jayashree Pain; Lin Yan; Gopal J. Babu; Christophe Depre; Kousaku Iwatsubo; Yoshihiro Ishikawa; Junichi Sadoshima; Stephen F. Vatner; Dorothy E. Vatner

Adenylyl cyclase (AC) types 5 and 6 (AC5 and AC6) are the two major AC isoforms expressed in the mammalian heart that mediate signals from beta-adrenergic receptor stimulation. Because of the unavailability of isoform-specific antibodies, it is difficult to ascertain the expression levels of AC5 protein in the heart. Here we demonstrated the successful generation of an AC5 isoform-specific mouse monoclonal antibody and studied the expression of AC5 protein during cardiac development in different mammalian species. The specificity of the antibody was confirmed using heart and brain tissues from AC5 knockout mice and from transgenic mice overexpressing AC5. In mice, the AC5 protein was highest in the brain but was also detectable in all organs studied, including the heart, brain, lung, liver, stomach, kidney, skeletal muscle, and vascular tissues. Western blot analysis showed that AC5 was most abundant in the neonatal heart and declined to basal levels in the adult heart. AC5 protein increased in the heart with pressure-overload left ventricular hypertrophy. Thus this new AC5 antibody demonstrated that this AC isoform behaves similarly to fetal type genes, such as atrial natriuretic peptide; i.e., it declines with development and increases with pressure-overload hypertrophy.


Circulation | 2013

Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway.

Lo Lai; Lin Yan; Shumin Gao; Che-Lin Hu; Hui Ge; Amy Davidow; Misun Park; Claudio Bravo; Kousaku Iwatsubo; Yoshihiro Ishikawa; Johan Auwerx; David A. Sinclair; Stephen F. Vatner; Dorothy E. Vatner

Background— For reasons that remain unclear, whether type 5 adenylyl cyclase (AC5), 1 of 2 major AC isoforms in heart, is protective or deleterious in response to cardiac stress is controversial. To reconcile this controversy we examined the cardiomyopathy induced by chronic isoproterenol in AC5 transgenic (Tg) mice and the signaling mechanisms involved. Methods and Results— Chronic isoproterenol increased oxidative stress and induced more severe cardiomyopathy in AC5 Tg, as left ventricular ejection fraction fell 1.9-fold more than wild type, along with greater left ventricular dilation and increased fibrosis, apoptosis, and hypertrophy. Oxidative stress induced by chronic isoproterenol, detected by 8-OhDG was 15% greater, P=0.007, in AC5 Tg hearts, whereas protein expression of manganese superoxide dismutase (MnSOD) was reduced by 38%, indicating that the susceptibility of AC5 Tg to cardiomyopathy may be attributable to decreased MnSOD expression. Consistent with this, susceptibility of the AC5 Tg to cardiomyopathy was suppressed by overexpression of MnSOD, whereas protection afforded by the AC5 knockout (KO) was lost in AC5 KO×MnSOD heterozyous KO mice. Elevation of MnSOD was eliminated by both sirtuin and MEK inhibitors, suggesting both the SIRT1/FoxO3a and MEK/ERK pathway are involved in MnSOD regulation by AC5. Conclusions— Overexpression of AC5 exacerbates the cardiomyopathy induced by chronic catecholamine stress by altering regulation of SIRT1/FoxO3a, MEK/ERK, and MnSOD, resulting in oxidative stress intolerance, thereby shedding light on new approaches for treatment of heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase

Kousaku Iwatsubo; Claudio Bravo; Masami Uechi; Erdene Baljinnyam; Takashi Nakamura; Masanari Umemura; Lo Lai; Shumin Gao; Lin Yan; Xin Zhao; Misun Park; Hongyu Qiu; Satoshi Okumura; Mizuka Iwatsubo; Dorothy E. Vatner; Stephen F. Vatner; Yoshihiro Ishikawa

Despite numerous discoveries from genetically engineered mice, relatively few have been translated to the bedside, mainly because it is difficult to translate from genes to drugs. This investigation examines an antiviral drug, which also has an action to selectively inhibit type 5 adenylyl cyclase (AC5), a pharmaceutical correlate of the AC5 knockout (KO) model, which exhibits longevity and stress resistance. Our objective was to examine the extent to which pretreatment with this drug, adenine 9-β-d-arabinofuranoside (Ara-A), favorably ameliorates the development of heart failure (HF). Ara-A exhibited selective inhibition for AC5 compared with the other major cardiac AC isoform, AC6, i.e., it reduced AC activity significantly in AC5 transgenic (Tg) mice, but not in AC5KO mice and had little effect in either wild-type or AC6Tg mice. Permanent coronary artery occlusion for 3 wk in C57Bl/6 mice increased mortality and induced HF in survivors, as reflected by reduced cardiac function, while increasing cardiac fibrosis. The AC5 inhibitor Ara-A significantly improved all of these end points and also ameliorated chronic isoproterenol-induced cardiomyopathy. As with the AC5KO mice, Ara-A increased mitogen/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation. A MEK inhibitor abolished the beneficial effects of the AC5 inhibitor in the HF model, indicating the involvement of the downstream MEK-ERK pathway of AC5. Our data suggest that pharmacological AC5 inhibition may serve as a new therapeutic approach for HF.


American Journal of Physiology-cell Physiology | 2009

Epac increases melanoma cell migration by a heparan sulfate-related mechanism

Erdene Baljinnyam; Kousaku Iwatsubo; Reiko Kurotani; Xu Wang; Coskun Ulucan; Mizuka Iwatsubo; David Lagunoff; Yoshihiro Ishikawa

Melanoma, the most malignant form of human skin cancer, has a poor prognosis due to its strong metastatic ability. It was recently demonstrated that Epac, an effector molecule of cAMP, is involved in regulating cell migration; however, the role of Epac in melanoma cell migration remains unclear. We thus examined whether Epac regulates cell migration and metastasis of melanoma. Epac activation, by either specific agonist or overexpression of Epac, increased melanoma cell migration. Deletion of endogenous Epac with small interfering RNA decreased basal melanoma cell migration. These data suggested a major role of Epac in melanoma cell migration. Epac-induced cell migration was mediated by translocation of syndecan-2, a cell-surface heparan sulfate proteoglycan, to lipid rafts. This syndecan-2 translocation was regulated by tubulin polymerization via the Epac/phosphoinositol-3 kinase pathway. Epac-induced cell migration was also regulated by the production of heparan sulfate, a major extracellular matrix. Epac-induced heparan sulfate production was attributable to the increased expression of N-deacetylase/N-sulfotransferase-1 (NDST-1) accompanied by an increased NDST-1 translation rate. Finally, Epac overexpression enhanced lung colonization of melanoma cells in mice. Taken together, these data indicate that Epac regulates melanoma cell migration/metastasis mostly via syndecan-2 translocation and heparan sulfate production.


Expert Opinion on Therapeutic Targets | 2003

Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy

Kousaku Iwatsubo; Takashi Tsunematsu; Yoshihiro Ishikawa

Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoformdependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

Collaboration


Dive into the Kousaku Iwatsubo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen F. Vatner

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana S. De Lorenzo

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge