Kovur Prashanthi
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kovur Prashanthi.
IEEE\/ASME Journal of Microelectromechanical Systems | 2012
Kovur Prashanthi; M. Naresh; V. Seena; Thomas Thundat; V. Ramgopal Rao
This letter reports a photoplastic (SU-8) piezoelectric (ZnO) nanocomposite route for realization of simple and low-cost piezoelectric microelectromechanical systems (MEMS). Integrating the ZnO nanoparticles into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of ZnO but also combines the photopatternability and the optical transparency of the SU-8 polymer. These two aspects, therefore, lead to exciting MEMS applications with simple photolithography-based microfabrication. This approach opens up many new applications in the field of both sensor and energy harvesting.
Advanced Materials | 2016
Željka Antić; Miroslav D. Dramićanin; Kovur Prashanthi; Dragana Jovanovic; Sanja Kuzman; Thomas Thundat
Lanthanide-doped vanadate thin films offer (i) a promising platform for luminescence-based noncontact temperature sensing; (ii) ratiometric/self-referencing absolute measurements; (iii) exceptional repeatability and reversibility for multirun uses and a long life cycle; (iv) 2% K(-1) maximum temperature sensitivity (among the highest recorded for inorganic nanothermometers); (v) a temperature resolution greater than 0.5 K; and (vi) the potential for high-resolution 2D temperature mapping.
Nanotechnology | 2013
Kovur Prashanthi; Ravi Gaikwad; Thomas Thundat
A surface dominant sub-bandgap photo-carrier generation has been observed in multiferroic BiFeO3 (BFO) nanowires, which is mainly attributed to the depopulation of surface states that exist within the bandgap. Mapping of surface potential using Kelvin probe force microscopy (KPFM) further supports the depopulation of surface states in BFO nanowires under sub-bandgap illumination. The mechanism of photovoltage generation in BFO nanowires is investigated by measuring the photoresponse with local illumination of visible laser pulses at different positions of the BFO nanowires. Interestingly, large photovoltage signals were observed when the laser spot was focused close to contact electrodes, showing a position dependent effect of photoresponse in the BFO nanowires. The sub-bandgap excitation of surface states in multiferroic nanowires offers potential new strategies for application in photovoltaic devices.
Scientific Reports | 2013
Garima Thakur; Kovur Prashanthi; Thomas Thundat
Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns.
Langmuir | 2014
Garima Thakur; Keren Jiang; Dongkyu Lee; Kovur Prashanthi; Seonghwan Kim; Thomas Thundat
Broad-spectrum biosensing technologies examine sensor signals using biomarkers, such as proteins, DNA, antibodies, specific cells, and macromolecules, based on direct- or indirect-conformational changes. Here, we have investigated the pH-dependent conformational isomerization of human serum albumin (HSA) using microcantilevers as a sensing platform. Native and denatured proteins were immobilized on cantilever surfaces to understand the effect of pH on conformational changes of the protein with respect to the coupling ligand. Our results show that protonation and deprotonation of amino acid residues on proteins play a significant role in generating charge-induced cantilever deflection. Surface plasmon resonance (SPR) was employed as a complementary technique to validate the results.
Nano Letters | 2015
Kovur Prashanthi; Arindam Phani; Thomas Thundat
Mid-infrared (IR) photothermal spectroscopy of adsorbed molecules is an ideal technique for molecular recognition in miniature sensors with very small thermal mass. Here, we report on combining the photothermal spectroscopy with electrical resonance of a semiconductor nanowire for enhanced sensitivity, selectivity, and simplified readout. Wide band gap semiconductor bismuth ferrite nanowire, by virtue of its very low thermal mass and abundance of surface states in the band gap, facilitates thermally induced charge carrier trapping in the surface states, which affects its electrical resonance response. Electrical resonance response of the nanowire varies significantly depending on the photothermal spectrum of the adsorbed molecules. We demonstrate highly selective detection of mid-IR photothermal spectral signatures of femtogram level molecules physisorbed on a nanowire by monitoring internal dissipation response at its electrical resonance.
Journal of Nanotechnology | 2013
Parmiss Mojir Shaibani; Kovur Prashanthi; Amirreza Sohrabi; Thomas Thundat
One-dimensional BiFeO3 (BFO) nanofibers fabricated by electrospinning of a solution of Nylon6/BFO followed by calcination were used for photocatalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nanofibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nanofibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nanofibers. Photocatalytic activity of the nanofibers and their application in water purification were investigated against 4-chlorophenol (4CP) as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photocatalytic activity of the BFO nanofibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.
ACS Applied Materials & Interfaces | 2018
Pengfei Zhao; Navneet Soin; Kovur Prashanthi; Jinkai Chen; Shurong Dong; Erping Zhou; Zhigang Zhu; Anand Arcot Narasimulu; Carlo D. Montemagno; Liyang Yu; Jikui Luo
Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (Voc) of up to ∼900 V, a short-circuit current density (Jsc) of ∼20 mA m-2, and a corresponding charge density of ∼149 μC m-2, which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m-2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the surface negative charge density of the PTFE fibrous membranes.
Scientific Reports | 2016
Arindam Phani; Vakhtang Putkaradze; John Eric Hawk; Kovur Prashanthi; Thomas Thundat
According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.
Nano Research | 2017
Ankur Goswami; Priyesh Dhandaria; Soupitak Pal; Ryan McGee; Faheem Khan; Željka Antić; Ravi Gaikwad; Kovur Prashanthi; Thomas Thundat
The correspondence author in the original version of this article was unfortunately wrongly written on page 3571 and the first page of the ESM.Instead of Ankur Goswami1, Priyesh Dhandaria1, Soupitak Pal2, Ryan McGee1, Faheem Khan1, Željka Antić1, Ravi Gaikwad1, Kovur Prashanthi1, and Thomas Thundat1 (✉)It should read Ankur Goswami1 (✉), Priyesh Dhandaria1, Soupitak Pal2, Ryan McGee1, Faheem Khan1, Željka Antić1, Ravi Gaikwad1, Kovur Prashanthi1, and Thomas Thundat1 The email address of the correspondence author in the original version of this article was unfortunately wrongly written on the page 3571 and the first page of the ESM.Instead of Address correspondence to [email protected] should read Address correspondence to [email protected]