Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krasimir A. Spasov is active.

Publication


Featured researches published by Krasimir A. Spasov.


Cell | 2008

Structural Basis of Membrane Invagination by F-BAR Domains

Adam Frost; Rushika M. Perera; Aurélien Roux; Krasimir A. Spasov; Olivier Destaing; Edward H. Egelman; Pietro De Camilli; Vinzenz M. Unger

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the modules concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domains lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Journal of Medicinal Chemistry | 2011

Computationally-Guided Optimization of a Docking Hit to Yield Catechol Diethers as Potent Anti-HIV Agents

Mariela Bollini; Robert A. Domaoal; Vinay V. Thakur; Ricardo Gallardo-Macias; Krasimir A. Spasov; Karen S. Anderson; William L. Jorgensen

A 5-μM docking hit has been optimized to an extraordinarily potent (55 pM) non-nucleoside inhibitor of HIV reverse transcriptase. Use of free energy perturbation (FEP) calculations to predict relative free energies of binding aided the optimizations by identifying optimal substitution patterns for phenyl rings and a linker. The most potent resultant catechol diethers feature terminal uracil and cyanovinylphenyl groups. A halogen bond with Pro95 likely contributes to the extreme potency of compound 42. In addition, several examples are provided illustrating failures of attempted grafting of a substructure from a very active compound onto a seemingly related scaffold to improve its activity.


Journal of the American Chemical Society | 2011

Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase.

William L. Jorgensen; Mariela Bollini; Vinay V. Thakur; Robert A. Domaoal; Krasimir A. Spasov; Karen S. Anderson

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) that interfere with the replication of human immunodeficiency virus (HIV) are being pursued with guidance from molecular modeling including free-energy perturbation (FEP) calculations for protein-inhibitor binding affinities. The previously reported pyrimidinylphenylamine 1 and its chloro analogue 2 are potent anti-HIV agents; they inhibit replication of wild-type HIV-1 in infected human T-cells with EC(50) values of 2 and 10 nM, respectively. However, they show no activity against viral strains containing the Tyr181Cys (Y181C) mutation in HIV-RT. Modeling indicates that the problem is likely associated with extensive interaction between the dimethylallyloxy substituent and Tyr181. As an alternative, a phenoxy group is computed to be oriented in a manner diminishing the contact with Tyr181. However, this replacement leads to a roughly 1000-fold loss of activity for 3 (2.5 μM). The present report details the efficient, computationally driven evolution of 3 to novel NNRTIs with sub-10 nM potency toward both wild-type HIV-1 and Y181C-containing variants. The critical contributors were FEP substituent scans for the phenoxy and pyrimidine rings and recognition of potential benefits of addition of a cyanovinyl group to the phenoxy ring.


Chemical Science | 2011

Quasi-biomimetic ring contraction promoted by a cysteine-based nucleophile: Total synthesis of Sch-642305, some analogs and their putative anti-HIV activities

Alpay Dermenci; Philipp S. Selig; Robert A. Domaoal; Krasimir A. Spasov; Karen S. Anderson; Scott J. Miller

Cysteine plays a number of important functional and structural roles in Nature, often in the realm of catalysis. Herein, we present an example of a cysteine-catalyzed Rauhut-Currier reaction for a potentially biomimetic synthesis of Sch-642305 and related analogs. In this key step of the synthesis we discuss interesting new discoveries and the importance of substrate-catalyst recognition, as well as cysteines structural features. Also, we investigate the activity of Sch-642305 and four analogs in HIV-infected T-cells.


Journal of the American Chemical Society | 2013

Picomolar Inhibitors of HIV Reverse Transcriptase Featuring Bicyclic Replacement of a Cyanovinylphenyl Group

Won-Gil Lee; Ricardo Gallardo-Macias; Kathleen M. Frey; Krasimir A. Spasov; Mariela Bollini; Karen S. Anderson; William L. Jorgensen

Members of the catechol diether class are highly potent non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). The most active compounds yield EC50 values below 0.5 nM in assays using human T-cells infected by wild-type HIV-1. However, these compounds such as rilpivirine, the most recently FDA-approved NNRTI, bear a cyanovinylphenyl (CVP) group. This is an uncommon substructure in drugs that gives reactivity concerns. In the present work, computer simulations were used to design bicyclic replacements for the CVP group. The predicted viability of a 2-cyanoindolizinyl alternative was confirmed experimentally and provided compounds with 0.4 nM activity against the wild-type virus. The compounds also performed well with EC50 values of 10 nM against the challenging HIV-1 variant that contains the Lys103Asn/Tyr181Cys double mutation in the RT enzyme. Indolyl and benzofuranyl analogues were also investigated; the most potent compounds in these cases have EC50 values toward wild-type HIV-1 near 10 nM and high-nanomolar activities toward the double-variant. The structural expectations from the modeling were much enhanced by obtaining an X-ray crystal structure at 2.88 Å resolution for the complex of the parent 2-cyanoindolizine 10b and HIV-1 RT. The aqueous solubilities of the most potent indolizine analogues were also measured to be ~40 μg/mL, which is similar to that for the approved drug efavirenz and ~1000-fold greater than for rilpivirine.


Journal of Medicinal Chemistry | 2015

Structure-Based Evaluation of Non-nucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants.

Kathleen M. Frey; David E. Puleo; Krasimir A. Spasov; Mariella Bollini; William L. Jorgensen; Karen S. Anderson

The development of novel non-nucleoside inhibitors (NNRTIs) with activity against variants of HIV reverse transcriptase (RT) is crucial for overcoming treatment failure. The NNRTIs bind in an allosteric pocket in RT ∼10 Å away from the active site. Earlier analogues of the catechol diether compound series have picomolar activity against HIV strains with wild-type RT but lose potency against variants with single Y181C and double K103N/Y181C mutations. As guided by structure-based and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C variants and better solubility (510 μg/mL). Crystal structures were determined for wild-type, Y181C, and K103N/Y181C RT in complex with both compounds 1 and 2 to understand the structural basis for these findings. Comparison of the structures reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket. Compound 2 maintains the same conformation in wild-type and mutant structures, in addition to several interactions with the NNRTI binding pocket. Comparison of the six crystal structures will assist in the understanding of compound binding modes and future optimization of the catechol diether series.


Journal of Structural Biology | 2010

Structural Fold, Conservation and Fe(II) Binding of the Intracellular Domain of Prokaryote Feob.

Kuo Wei Hung; Yi Wei Chang; Edward T. Eng; Jai Hui Chen; Yi Chung Chen; Yuh-Ju Sun; Chwan Deng Hsiao; Gang Dong; Krasimir A. Spasov; Vinzenz M. Unger; Tai Huang Huang

FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domains two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.


Bioorganic & Medicinal Chemistry Letters | 2013

Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility

Mariela Bollini; José A. Cisneros; Krasimir A. Spasov; Karen S. Anderson; William L. Jorgensen

Non-nucleoside inhibitors of HIV-1 reverse transcriptase are reported that have ca. 100-fold greater solubility than the structurally related drugs etravirine and rilpivirine, while retaining high anti-viral activity. The solubility enhancements come from strategic placement of a morpholinylalkoxy substituent in the entrance channel of the NNRTI binding site. Compound 4d shows low-nanomolar activity similar to etravirine towards wild-type HIV-1 and key viral variants.


Biochemistry | 2013

First Three-Dimensional Structure of Toxoplasma gondii Thymidylate Synthase-Dihydrofolate Reductase: Insights for Catalysis, Interdomain Interactions, and Substrate Channeling.

Hitesh Sharma; Mark J. Landau; Melissa A. Vargo; Krasimir A. Spasov; Karen S. Anderson

Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Toxoplasma gondii , contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the catalytic activities contained on a single polypeptide chain. The prevalence of T. gondii infections across the world, especially for those immunocompromised, underscores the need to understand TS-DHFR enzyme function and to find new avenues to exploit for the design of novel antiparasitic drugs. As a first step, we have solved the first three-dimensional structures of T. gondii TS-DHFR at 3.7 Å and of a loop truncated TS-DHFR, removing several flexible surface loops in the DHFR domain, improving resolution to 2.2 Å. Distinct structural features of the TS-DHFR homodimer include a junctional region containing a kinked crossover helix between the DHFR domains of the two adjacent monomers, a long linker connecting the TS and DHFR domains, and a DHFR domain that is positively charged. The roles of these unique structural features were probed by site-directed mutagenesis coupled with presteady state and steady state kinetics. Mutational analysis of the crossover helix region combined with kinetic characterization established the importance of this region not only in DHFR catalysis but also in modulating the distal TS activity, suggesting a role for TS-DHFR interdomain interactions. Additional kinetic studies revealed that substrate channeling occurs in which dihydrofolate is directly transferred from the TS to DHFR active site without entering bulk solution. The crystal structure suggests that the positively charged DHFR domain governs this electrostatically mediated movement of dihydrofolate, preventing release from the enzyme. Taken together, these structural and kinetic studies reveal unique, functional regions on the T. gondii TS-DHFR enzyme that may be targeted for inhibition, thus paving the way for designing species specific inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery of dimeric inhibitors by extension into the entrance channel of HIV-1 reverse transcriptase.

Anil R. Ekkati; Mariela Bollini; Robert A. Domaoal; Krasimir A. Spasov; Karen S. Anderson; William L. Jorgensen

Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase is being pursued with computational guidance. Extension of azine-containing inhibitors into the entrance channel between Lys103 and Glu138 has led to the discovery of potent and structurally novel derivatives including dimeric inhibitors in an NNRTI-linker-NNRTI motif.

Collaboration


Dive into the Krasimir A. Spasov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge