Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krasimir Slanchev is active.

Publication


Featured researches published by Krasimir Slanchev.


Current Biology | 2003

dead end, a Novel Vertebrate Germ Plasm Component, Is Required for Zebrafish Primordial Germ Cell Migration and Survival

Gilbert Weidinger; Jürg Stebler; Krasimir Slanchev; Karin Dumstrei; Clare Wise; Robin Lovell-Badge; Christine Thisse; Bernard Thisse; Erez Raz

In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.


PLOS Genetics | 2009

The Epithelial Cell Adhesion Molecule EpCAM Is Required for Epithelial Morphogenesis and Integrity during Zebrafish Epiboly and Skin Development

Krasimir Slanchev; Thomas J. Carney; Marc P. Stemmler; Birgit Koschorz; Adam Amsterdam; Heinz Schwarz; Matthias Hammerschmidt

The aberrant expression of the transmembrane protein EpCAM is associated with tumor progression, affecting different cellular processes such as cell–cell adhesion, migration, proliferation, differentiation, signaling, and invasion. However, the in vivo function of EpCAM still remains elusive due to the lack of genetic loss-of-function studies. Here, we describe epcam (tacstd) null mutants in zebrafish. Maternal-zygotic mutants display compromised basal protrusive activity and epithelial morphogenesis in cells of the enveloping layer (EVL) during epiboly. In partial redundancy with E-cadherin (Ecad), EpCAM made by EVL cells is further required for cell–cell adhesion within the EVL and, possibly, for proper attachment of underlying deep cells to the inner surface of the EVL, thereby also affecting deep cell epiboly movements. During later development, EpCAM per se becomes indispensable for epithelial integrity within the periderm of the skin, secondarily leading to disrupted morphology of the underlying basal epidermis and moderate hyper-proliferation of skin cells. On the molecular level, EVL cells of epcam mutant embryos display reduced levels of membranous Ecad, accompanied by an enrichment of tight junction proteins and a basal extension of apical junction complexes (AJCs). Our data suggest that EpCAM acts as a partner of E-cadherin to control adhesiveness and integrity as well as plasticity and morphogenesis within simple epithelia. In addition, EpCAM is required for the interaction of the epithelia with underlying cell layers.


Journal of Investigative Dermatology | 2013

Adult Zebrafish as a Model System for Cutaneous Wound-Healing Research

Rebecca Richardson; Krasimir Slanchev; Christopher Kraus; Philipp Knyphausen; Sabine A. Eming; Matthias Hammerschmidt

Upon injury, the skin must quickly regenerate to regain its barrier function. In mammals, wound healing is rapid and scar-free during embryogenesis, whereas in adults it involves multiple steps including blood clotting, inflammation, re-epithelialization, vascularization, and granulation tissue formation and maturation, resulting in a scar. We have established a rapid and robust method to introduce full-thickness wounds onto the flank of adult zebrafish, and show that apart from external fibrin clot formation, all steps of adult mammalian wound repair also exist in zebrafish. Wound re-epithelialization is extremely rapid and initiates with no apparent lag-phase, subsequently followed by the immigration of inflammatory cells and the formation of granulation tissue, consisting of macrophages, fibroblasts, blood vessels and collagen. The granulation tissue later regresses, resulting in minimal scar formation. Studies after chemical treatment or with transgenic fish further suggest that wound re-epithelialization occurs independently of inflammation and Fibroblast growth factor (FGF) signaling, whereas both are essential for fibroblast recruitment and granulation tissue formation. Together these results demonstrate that major steps and principles of cutaneous wound healing are conserved among adult mammals and adult zebrafish, making zebrafish a valuable model for studying vertebrate skin repair.


PLOS Genetics | 2010

Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes

Thomas J. Carney; Natália Martins Feitosa; Carmen Sonntag; Krasimir Slanchev; Johannes Kluger; Daiji Kiyozumi; Jan M. Gebauer; Jared Coffin Talbot; Charles B. Kimmel; Kiyotoshi Sekiguchi; Raimund Wagener; Heinz Schwarz; Phillip W. Ingham; Matthias Hammerschmidt

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the diseases aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Mechanisms of Development | 2009

Control of dead end localization and activity - implications for the function of the protein in antagonizing miRNA function.

Krasimir Slanchev; Juerg Stebler; Mehdi Goudarzi; Vlad Cojocaru; Gilbert Weidinger; Erez Raz

Dead end (dnd) is a vertebrate-specific component of the germ plasm and germ-cell granules that is crucial for germ-cell development in zebrafish and mouse. Dnd counteracts the inhibitory function of miRNAs, thereby facilitating the expression of proteins such as Nanos and Tdrd7 in the germ cells. Here, we show that cis-acting elements within dnd mRNA and the RNA recognition motive (RRM) of the protein are essential for targeting protein expression to the germ cells and to the perinuclear granules, respectively. We demonstrate that as it executes its function, Dnd translocates between the germ-cell nucleus and germ-cell granules. This phenomenon is not observed in proteins mutated in the RRM motif, correlating with loss of function of Dnd. Based on molecular modeling, we identify the putative RNA binding domain of Dnd as a canonical RRM and propose that this domain is important for protein subcellular localization and function.


Human Molecular Genetics | 2010

A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis

Elke Neumann-Haefelin; Albrecht Kramer-Zucker; Krasimir Slanchev; Björn Hartleben; Foteini Noutsou; Katrin Martin; Nicola Wanner; Alexander Ritter; Markus Gödel; Philip Pagel; Xiao Fu; Alexandra Müller; Ralf Baumeister; Gerd Walz; Tobias B. Huber

Mutations of the immunoglobulin superfamily proteins nephrin and Neph1 lead to congenital nephrotic syndrome in humans or mice. Neph proteins are three closely related molecules that are evolutionarily conserved and mediate cell recognition. Their importance for morphogenetic processes including the formation of the kidney filtration barrier in vertebrates and synaptogenesis in Caenorhabditis elegans has recently been uncovered. However, the individual morphogenetic function of mammalian Neph1-3 isoforms remained elusive. We demonstrate now that the Neph/nephrin family proteins can form cell-cell adhesion modules across species. Expression of all three mammalian Neph isoforms partially rescued mutant C. elegans lacking their Neph homolog syg-1 and restored synapse formation, suggesting a functional redundancy between the three isoforms. Strikingly, the rescue of defective synaptic connectivity was prevented by deletion of the highly conserved cytoplasmic PSD95/Dlg/ZO-1-binding motif of SYG-1/Neph proteins, indicating the critical role of this intracellular signaling motif for SYG-1/Neph-dependent morphogenetic events. To determine the significance of Neph isoform redundancy for vertebrate kidney development, we analyzed the expression pattern and the functional role of Neph proteins in zebrafish. In situ hybridizations identified zNeph1 and zNeph2 as glomerular proteins. Morpholino knockdown of either zNeph1 or zNeph2 resulted in loss of slit diaphragms and leakiness of the glomerular filtration barrier. This is the first report utilizing C. elegans to study mammalian Neph/nephrin protein function and to demonstrate a functional overlap of Neph1-3 proteins. Furthermore, we identify Neph2 as a novel critical regulator of glomerular function, indicating that both Neph1 and Neph2 are required for glomerular maintenance and development.


Development | 2013

Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene

Fan Suo Geng; Leila Abbas; Celia J. Holdsworth; A. George Swanson; Krasimir Slanchev; Matthias Hammerschmidt; Jacek Topczewski; Tanya T. Whitfield

Morphogenesis of the semicircular canal ducts in the vertebrate inner ear is a dramatic example of epithelial remodelling in the embryo, and failure of normal canal development results in vestibular dysfunction. In zebrafish and Xenopus, semicircular canal ducts develop when projections of epithelium, driven by extracellular matrix production, push into the otic vesicle and fuse to form pillars. We show that in the zebrafish, extracellular matrix gene expression is high during projection outgrowth and then rapidly downregulated after fusion. Enzymatic disruption of hyaluronan in the projections leads to their collapse and a failure to form pillars: as a result, the ears swell. We have cloned a zebrafish mutant, lauscher (lau), identified by its swollen ear phenotype. The primary defect in the ear is abnormal projection outgrowth and a failure of fusion to form the semicircular canal pillars. Otic expression of extracellular matrix components is highly disrupted: several genes fail to become downregulated and remain expressed at abnormally high levels into late larval stages. The lau mutations disrupt gpr126, an adhesion class G protein-coupled receptor gene. Expression of gpr126 is similar to that of sox10, an ear and neural crest marker, and is partially dependent on sox10 activity. Fusion of canal projections and downregulation of otic versican expression in a hypomorphic lau allele can be restored by cAMP agonists. We propose that Gpr126 acts through a cAMP-mediated pathway to control the outgrowth and adhesion of canal projections in the zebrafish ear via the regulation of extracellular matrix gene expression.


Development | 2015

The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin

Daniel Epting; Krasimir Slanchev; Christopher Boehlke; Sylvia Hoff; Niki T. Loges; Takayuki Yasunaga; Lara Indorf; Sigrun Nestel; Soeren S. Lienkamp; Heymut Omran; E. Wolfgang Kuehn; Olaf Ronneberger; Gerd Walz; Albrecht Kramer-Zucker

Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.


Development | 2016

Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals.

Rebecca Richardson; Manuel Metzger; Philipp Knyphausen; Thomas Ramezani; Krasimir Slanchev; Christopher Kraus; Elmon Schmelzer; Matthias Hammerschmidt

Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-β- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells – processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization. Summary: Chemical treatments combined with live imaging reveal that re-epithelialization of zebrafish wounds utilizes TGFβ/integrin-dependent active keratinocyte crawling as well as epidermal rearrangements.


PLOS ONE | 2013

A Complex of BBS1 and NPHP7 Is Required for Cilia Motility in Zebrafish

Yun Hee Kim; Daniel Epting; Krasimir Slanchev; Christina Engel; Gerd Walz; Albrecht Kramer-Zucker

Bardet-Biedl syndrome (BBS) and nephronophthisis (NPH) are hereditary autosomal recessive disorders, encoded by two families of diverse genes. BBS and NPH display several overlapping phenotypes including cystic kidney disease, retinitis pigmentosa, liver fibrosis, situs inversus and cerebellar defects. Since most of the BBS and NPH proteins localize to cilia and/or their appendages, BBS and NPH are considered ciliopathies. In this study, we characterized the function of the transcription factor Nphp7 in zebrafish, and addressed the molecular connection between BBS and NPH. The knockdown of zebrafish bbs1 and nphp7.2 caused similar phenotypic changes including convergent extension defects, curvature of the body axis, hydrocephalus, abnormal heart looping and cystic pronephros, all consistent with an altered ciliary function. Immunoprecipitation assays revealed a physical interaction between BBS1 and NPHP7, and the simultaneous knockdown of zbbs1 and znphp7.2 enhanced the cystic pronephros phenotype synergistically, suggesting a genetic interaction between zbbs1 and znphp7.2 in vivo. Deletion of zBbs1 or zNphp7.2 did not compromise cilia formation, but disrupted cilia motility. Although NPHP7 has been shown to act as transcriptional repressor, our studies suggest a crosstalk between BBS1 and NPHP7 in regulating normal function of the cilium.

Collaboration


Dive into the Krasimir Slanchev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erez Raz

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Gerd Walz

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge