Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krasimir Vasilev is active.

Publication


Featured researches published by Krasimir Vasilev.


Expert Review of Medical Devices | 2009

Antibacterial surfaces for biomedical devices

Krasimir Vasilev; Jessica Cook; Hans J. Griesser

Despite considerable research and development efforts, the problem of infections related to biomedical devices and implants persists. Bacteria evidently can readily colonize surfaces of synthetic materials, such as those used for the fabrication of catheters, hip and knee implants, and many other devices. As the growing colony encapsulates itself with a protective exocellular bacterial polysaccharide layer, the biofilm becomes much harder to combat than circulating bacteria. Thus, there is a strong need to mitigate bacterial colonization by equipping the surfaces of biomedical devices and implants with features such as surface chemistry and surface roughness that are unfavorable for bacterial attachment. Here we review a number of strategies used for the design of antibacterial coatings. We also discuss specific issues that arise from using various types of coatings.


Biomaterials | 2010

Tailoring the surface functionalities of titania nanotube arrays

Krasimir Vasilev; Krishna Kant; Joseph Chan; Andrew Michelmore; Dusan Losic

Nanotubular titanium oxide (TiO(2)) produced by self-ordering processes using electrochemical anodization have been extensively explored in recent years as a new biomaterial for implants, drug delivery systems, cell growth, biosensors, immunoisolations, bioartificial organs and tissue engineering. Chemical inertness is the main weakness of this material when placed in contact with biological systems and surface modification is a possible solution of this problem. The aim of this study is to develop a flexible and facile method for surface modification of TiO(2) nanotubes to tailor new interfacial properties important in many biomedical applications. TiO(2) nanotubes were prepared by electrochemical anodization of titanium foil using ethylene glycol: NH(4)F electrolyte (2% water and 0.3% NH(4)F). Plasma surface modification using allylamine (AA) as a precursor has been applied to generate a thin and chemically reactive polymer (AAPP) film rich in amine groups on top of the TiO(2) nanotube surface. This initial polymer film was used for further surface functionalization by attachment of desired molecules. Two modification techniques were used to demonstrate the flexibility for building of new functionalities on titania nanotube surface: electrostatic adsorption of poly(sodium styrenesulfonate) (PSS) as an example of layer-by-layer assembly (LbL), and covalent coupling of poly(ethylene glycol) (PEG) as an example of creating a protein-resistant surface. These approaches for tailoring the surface chemistry and wettability of TiO(2) nanotubes offer considerable prospects for advancing their interfacial properties to improve existing and develop new functional biomaterials for diverse biomedical applications.


Environmental Pollution | 2013

Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge

Enzo Lombi; Erica Donner; Shima Taheri; Åsa K. Jämting; Stuart McClure; Ravi Naidu; Bradley W. Miller; Kirk G. Scheckel; Krasimir Vasilev

The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-NPs to Ag2S is to be expected during wastewater transport/treatment. However, the influence of surface functionality, the nature of the core structure and the effect of post-processing on Ag speciation in sewage sludge/biosolids has not been investigated. This study aims at closing these knowledge gaps using bench scale anaerobic digesters spiked with Ag nitrate, three different types of Ag-NPs, and AgCl-NPs at environmentally realistic concentrations. The results indicate that neither surface functionality nor the different compositions of the NP prevented the formation of Ag2S. Silver sulfides, unlike the sulfides of other metals present in sewage sludge, were stable over a six month period simulating composting/stockpiling.


Nano Letters | 2010

Tunable Antibacterial Coatings That Support Mammalian Cell Growth

Krasimir Vasilev; Vasu Sah; Karine Anselme; Chi P. Ndi; Mihaela Mateescu; Björn Dollmann; Petr Martinek; Hardi Ys; Lydie Ploux; Hans J. Griesser

Bacterial infections present an enormous problem causing human suffering and cost burdens to healthcare systems worldwide. Here we present novel tunable antibacterial coatings which completely inhibit bacterial colonization by Staphylococcus epidermidis but allow normal adhesion and spreading of osteoblastic cells. The coatings are based on amine plasma polymer films loaded with silver nanoparticles. The method of preparation allows flexible control over the amount of loaded silver nanoparticles and the rate of release of silver ions.


Chemical Communications | 2010

Controlled drug release from porous materials by plasma polymer deposition.

Spomenka Simovic; Dusan Losic; Krasimir Vasilev

In this communication, we present a novel approach for control of drug release from porous materials. The method is based on deposition of a plasma polymer layer with controlled thickness which reduces a pore diameter and, hence, defines the rate of drug release.


Biomacromolecules | 2013

Guanylated Polymethacrylates: A Class of Potent Antimicrobial Polymers with Low Hemolytic Activity

Katherine E. S. Locock; Thomas D. Michl; Jules D. P. Valentin; Krasimir Vasilev; John D. Hayball; Yue Qu; Ana Traven; Hans J. Griesser; Laurence Meagher; Matthias Haeussler

We have synthesized a series of copolymers containing both positively charged (amine, guanidine) and hydrophobic side chains (amphiphilic antimicrobial peptide mimics). To investigate the structure-activity relationships of these polymers, low polydispersity polymethacrylates of varying but uniform molecular weight and composition were synthesized, using a reversible addition-fragmentation chain transfer (RAFT) approach. In a facile second reaction, pendant amine groups were converted to guanidines, allowing for direct comparison of cation structure on activity and toxicity. The guanidine copolymers were much more active against Staphylococcus epidermidis and Candida albicans compared to the amine analogues. Activity against Staphylococcus epidermidis in the presence of fetal bovine serum was only maintained for guanidine copolymers. Selectivity for bacterial over mammalian cells was assessed using hemolytic and hemagglutination toxicity assays. Guanidine copolymers of low to moderate molecular weight and hydrophobicity had high antimicrobial activity with low toxicity. Optimum properties appear to be a balance between charge density, hydrophobic character, and polymer chain length. In conclusion, a suite of guanidine copolymers has been identified that represent a new class of antimicrobial polymers with high potency and low toxicity.


Chemical Communications | 2009

Substrate influence on the initial growth phase of plasma-deposited polymer films

Krasimir Vasilev; Andrew Michelmore; Hans J. Griesser; Robert D. Short

In this communication we demonstrate that in the initial stages of deposition of ultrathin plasma polymer films, both the growth rate and the chemical composition of the films are affected by the nature of the substrate which is an important question surprisingly neglected until now.


Nanotechnology | 2010

Antibacterial surfaces by adsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles.

Krasimir Vasilev; Vasu Sah; Renee V. Goreham; Chi P. Ndi; Robert D. Short; Hans J. Griesser

This paper presents a novel and facile method for the generation of efficient antibacterial coatings which can be applied to practically any type of substrate. Silver nanoparticles were stabilized with an adsorbed surface layer of polyvinyl sulphonate (PVS). This steric layer provided excellent colloidal stability, preventing aggregation over periods of months. PVS-coated silver nanoparticles were bound onto amine-containing surfaces, here produced by deposition of an allylamine plasma polymer thin film onto various substrates. SEM imaging showed no aggregation upon surface binding of the nanoparticles; they were well dispersed on amine surfaces. Such nanoparticle-coated surfaces were found to be effective in preventing attachment of Staphylococcus epidermidis bacteria and also in preventing biofilm formation. Combined with the ability of plasma polymerization to apply the thin polymeric binding layer onto a wide range of materials, this method appears promising for the fabrication of a wide range of infection-resistant biomedical devices.


Journal of Physical Chemistry B | 2008

Solvent-induced porosity in ultrathin amine plasma polymer coatings.

Krasimir Vasilev; Leanne Britcher; Ana Casanal; Hans J. Griesser

Plasma polymers deposited from n-heptylamine onto silicon wafers have been found to form a porous microstructure when immersed in water and other solvents, with pores of dimensions and densities that vary considerably between coatings deposited under different plasma conditions. This solvent-induced pore formation was found to correlate with the observed percentage of extractable material. With low radio frequency (rf) power inputs, the resultant softer coatings possess considerably more extractable material than coatings deposited at higher applied power levels. The porosity is thus proposed to result from the formation of voids created by the extraction of soluble low-molecular-weight polymeric material, which produces shrinkage stress that the coating, firmly attached to the substrate, cannot relieve by macroscopic contraction. The microscopic contraction of plasma polymer volume creates voids that appear to span the entire film thickness. The effect of aging plasma polymers in air was also investigated. For films deposited at low power it led to reduced extraction of soluble material and different pore morphology, whereas for films deposited at higher rf power levels, the extracted amounts and pore formation were the same for aged coatings. It was also found that the density of surface amine groups was lower for films deposited under the two lowest power settings, in contrast to the commonly held belief that the use of minimal applied rf power aids retention of functional groups. These porous plasma polymer coatings with surface groups suitable for further interfacial chemical immobilization reactions may be useful for various membrane and biotechnology applications.


Langmuir | 2008

Reactive Epoxy-Functionalized Thin Films by a Pulsed Plasma Polymerization Process

Benjamin Thierry; Marek Jasieniak; Louis C. P. M. de Smet; Krasimir Vasilev; Hans J. Griesser

A novel plasma functionalization process based on the pulsed plasma polymerization of allyl glycidyl ether is reported for the generation of robust and highly reactive epoxy-functionalized surfaces with well-defined chemical properties. Using a multitechnique approach including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and ellipsometry, the effect of the plasma deposition parameters on the creation and retention of epoxy surface functionalities was characterized systematically. Under optimal plasma polymerization conditions (duty cycle: 1 ms/20 ms and 1 ms/200 ms), reactive uniform films with a high level of reproducibility were prepared and successfully used to covalently immobilize the model protein lysozyme. Surface derivatization was also carried out with ethanolamine to probe for epoxy groups. The ethanolamine blocked surface resisted nonspecific adsorption of lysozyme. Lysozyme immobilization was also done via microcontact printing. These results show that allyl glycidyl ether plasma polymer layers are an attractive strategy to produce a reactive epoxy functionalized surface on a wide range of substrate materials for biochip and other biotechnology applications.

Collaboration


Dive into the Krasimir Vasilev's collaboration.

Top Co-Authors

Avatar

Hans J. Griesser

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Alex Cavallaro

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Akash Bachhuka

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

John D. Hayball

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Mierczynska

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Majewski

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Michelmore

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Shima Taheri

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge