Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kresten Lindorff-Larsen is active.

Publication


Featured researches published by Kresten Lindorff-Larsen.


Proteins | 2010

Improved side‐chain torsion potentials for the Amber ff99SB protein force field

Kresten Lindorff-Larsen; Stefano Piana; Kim Palmo; Paul Maragakis; John L. Klepeis; Ron O. Dror; David E. Shaw

Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side‐chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha‐helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side‐chain torsion potentials of these residues to match new, high‐level quantum‐mechanical calculations. Finally, we used microsecond‐timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side‐chain conformations. The new force field, which we have termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010.


Science | 2010

Atomic-Level Characterization of the Structural Dynamics of Proteins

David E. Shaw; Paul Maragakis; Kresten Lindorff-Larsen; Stefano Piana; Ron O. Dror; Michael P. Eastwood; Joseph A. Bank; John M. Jumper; John K. Salmon; Yibing Shan; Willy Wriggers

Following Folding Fast Many protein functions involve conformational changes that occur on time-scales between tens of microseconds and milliseconds. This has limited the usefulness of all-atom molecular dynamics simulations, which are performed over shorter time-scales. Shaw et al. (p. 341) now report millisecond-scale, all-atom molecular dynamics simulations in an explicitly represented solvent environment. Simulation of the folding of a WW domain showed a well-defined folding pathway and simulation of the dynamics of bovine pancreatic trypsin inhibitor showed interconversion between distinct conformational states. Millisecond-scale simulations capture biologically relevant structural transitions during protein folding. Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics—protein folding and conformational change within the folded state—by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein’s constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.


Science | 2011

How Fast-Folding Proteins Fold

Kresten Lindorff-Larsen; Stefano Piana; Ron O. Dror; David E. Shaw

Millisecond-scale molecular dynamics simulations of 12 proteins reveal a set of common principles for protein folding. An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 μs and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.


Nature | 2005

Simultaneous determination of protein structure and dynamics

Kresten Lindorff-Larsen; Robert B. Best; Mark A. DePristo; Christopher M. Dobson; Michele Vendruscolo

We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy—for obtaining experimental information at the atomic level about the structural and dynamical features of proteins—with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant advances in our ability to understand and utilize the structures of native proteins.


Current Opinion in Structural Biology | 2009

Long-timescale molecular dynamics simulations of protein structure and function.

John L. Klepeis; Kresten Lindorff-Larsen; Ron O. Dror; David E. Shaw

Molecular dynamics simulations allow for atomic-level characterization of biomolecular processes such as the conformational transitions associated with protein function. The computational demands of such simulations, however, have historically prevented them from reaching the microsecond and greater timescales on which these events often occur. Recent advances in algorithms, software, and computer hardware have made microsecond-timescale simulations with tens of thousands of atoms practical, with millisecond-timescale simulations on the horizon. This review outlines these advances in high-performance molecular dynamics simulation and discusses recent applications to studies of protein dynamics and function as well as experimental validation of the underlying computational models.


Biophysical Journal | 2011

How Robust Are Protein Folding Simulations with Respect to Force Field Parameterization

Stefano Piana; Kresten Lindorff-Larsen; David E. Shaw

Molecular dynamics simulations hold the promise of providing an atomic-level description of protein folding that cannot easily be obtained from experiments. Here, we examine the extent to which the molecular mechanics force field used in such simulations might influence the observed folding pathways. To that end, we performed equilibrium simulations of a fast-folding variant of the villin headpiece using four different force fields. In each simulation, we observed a large number of transitions between the unfolded and folded states, and in all four cases, both the rate of folding and the structure of the native state were in good agreement with experiments. We found, however, that the folding mechanism and the properties of the unfolded state depend substantially on the choice of force field. We thus conclude that although it is important to match a single, experimentally determined structure and folding rate, this does not ensure that a given simulation will provide a unique and correct description of the full free-energy surface and the mechanism of folding.


ieee international conference on high performance computing data and analytics | 2009

Millisecond-scale molecular dynamics simulations on Anton

David E. Shaw; Ron O. Dror; John K. Salmon; J. P. Grossman; Kenneth M. Mackenzie; Joseph A. Bank; Cliff Young; Martin M. Deneroff; Brannon Batson; Kevin J. Bowers; Edmond Chow; Michael P. Eastwood; Douglas J. Ierardi; John L. Klepeis; Jeffrey S. Kuskin; Richard H. Larson; Kresten Lindorff-Larsen; Paul Maragakis; Mark A. Moraes; Stefano Piana; Yibing Shan; Brian Towles

Anton is a recently completed special-purpose supercomputer designed for molecular dynamics (MD) simulations of biomolecular systems. The machines specialized hardware dramatically increases the speed of MD calculations, making possible for the first time the simulation of biological molecules at an atomic level of detail for periods on the order of a millisecond-about two orders of magnitude beyond the previous state of the art. Anton is now running simulations on a timescale at which many critically important, but poorly understood phenomena are known to occur, allowing the observation of aspects of protein dynamics that were previously inaccessible to both computational and experimental study. Here, we report Antons performance when executing actual MD simulations whose accuracy has been validated against both existing MD software and experimental observations. We also discuss the manner in which novel algorithms have been coordinated with Antons co-designed, application-specific hardware to achieve these results.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Principles of conduction and hydrophobic gating in K+ channels

Morten Ø. Jensen; David W. Borhani; Kresten Lindorff-Larsen; Paul Maragakis; Vishwanath Jogini; Michael P. Eastwood; Ron O. Dror; David E. Shaw

We present the first atomic-resolution observations of permeation and gating in a K+ channel, based on molecular dynamics simulations of the Kv1.2 pore domain. Analysis of hundreds of simulated permeation events revealed a detailed conduction mechanism, resembling the Hodgkin–Keynes “knock-on” model, in which translocation of two selectivity filter–bound ions is driven by a third ion; formation of this knock-on intermediate is rate determining. In addition, at reverse or zero voltages, we observed pore closure by a novel “hydrophobic gating” mechanism: A dewetting transition of the hydrophobic pore cavity—fastest when K+ was not bound in selectivity filter sites nearest the cavity—caused the open, conducting pore to collapse into a closed, nonconducting conformation. Such pore closure corroborates the idea that voltage sensors can act to prevent pore collapse into the intrinsically more stable, closed conformation, and it further suggests that molecular-scale dewetting facilitates a specific biological function: K+ channel gating. Existing experimental data support our hypothesis that hydrophobic gating may be a fundamental principle underlying the gating of voltage-sensitive K+ channels. We suggest that hydrophobic gating explains, in part, why diverse ion channels conserve hydrophobic pore cavities, and we speculate that modulation of cavity hydration could enable structural determination of both open and closed channels.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Atomic-level description of ubiquitin folding

Stefano Piana; Kresten Lindorff-Larsen; David E. Shaw

Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins.


Journal of the American Chemical Society | 2012

Structure and Dynamics of an Unfolded Protein Examined by Molecular Dynamics Simulation

Kresten Lindorff-Larsen; Nikola Trbovic; Paul Maragakis; Stefano Piana; David E. Shaw

The accurate characterization of the structure and dynamics of proteins in disordered states is a difficult problem at the frontier of structural biology whose solution promises to further our understanding of protein folding and intrinsically disordered proteins. Molecular dynamics (MD) simulations have added considerably to our understanding of folded proteins, but the accuracy with which the force fields used in such simulations can describe disordered proteins is unclear. In this work, using a modern force field, we performed a 200 μs unrestrained MD simulation of the acid-unfolded state of an experimentally well-characterized protein, ACBP, to explore the extent to which state-of-the-art simulation can describe the structural and dynamical features of a disordered protein. By comparing the simulation results with the results of NMR experiments, we demonstrate that the simulation successfully captures important aspects of both the local and global structure. Our simulation was ~2 orders of magnitude longer than those in previous studies of unfolded proteins, a length sufficient to observe repeated formation and breaking of helical structure, which we found to occur on a multimicrosecond time scale. We observed one structural feature that formed but did not break during the simulation, highlighting the difficulty in sampling disordered states. Overall, however, our simulation results are in reasonable agreement with the experimental data, demonstrating that MD simulations can already be useful in describing disordered proteins. Finally, our direct calculation of certain NMR observables from the simulation provides new insight into the general relationship between structural features of disordered proteins and experimental NMR relaxation properties.

Collaboration


Dive into the Kresten Lindorff-Larsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Papaleo

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wouter Boomsma

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Wang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge