Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kris Gevaert is active.

Publication


Featured researches published by Kris Gevaert.


Nature Biotechnology | 2003

Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides.

Kris Gevaert; Marc Goethals; Lennart Martens; Jozef Van Damme; An Staes; Grégoire Thomas; Joël Vandekerckhove

Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.


Current Biology | 2001

Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex

Sonja Krugmann; Ingrid Jordens; Kris Gevaert; Mariëtte H.E. Driessens; Joël Vandekerckhove; Alan Hall

BACKGROUND The Rho GTPases Rho, Rac, and Cdc42 regulate the organization of the actin cytoskeleton by interacting with multiple, distinct downstream effector proteins. Cdc42 controls the formation of actin bundle-containing filopodia at the cellular periphery. The molecular mechanism for this remains as yet unclear. RESULTS We report here that Cdc42 interacts with IRSp53/BAP2 alpha, an SH3 domain-containing scaffold protein, at a partial CRIB motif and that an N-terminal fragment of IRSp53 binds, via an intramolecular interaction, to the CRIB motif-containing central region. Overexpression of IRSp53 in fibroblasts leads to the formation of filopodia, and both this and Cdc42-induced filopodia are inhibited by expression of the N-terminal IRSp53 fragment. Using affinity chromatography, we have identified Mena, an Ena/VASP family member, as interacting with the SH3 domain of IRSp53. Mena and IRSp53 act synergistically to promote filopodia formation. CONCLUSION We conclude that the interaction of Cdc42 with the partial CRIB motif of IRSp53 relieves an intramolecular, autoinhibitory interaction with the N terminus, allowing the recruitment of Mena to the IRSp53 SH3 domain. This IRSp53:Mena complex initiates actin filament assembly into filopodia.


Hepatology | 2005

Morphological and biochemical characterization of a human liver in a uPA‐SCID mouse chimera

Philip Meuleman; Louis Libbrecht; Rita Vos; Bernard de Hemptinne; Kris Gevaert; Joël Vandekerckhove; Tania Roskams; Geert Leroux-Roels

A small animal model harboring a functional human liver cell xenograft would be a useful tool to study human liver cell biology, drug metabolism, and infections with hepatotropic viruses. Here we describe the repopulation, organization, and function of human hepatocytes in a mouse recipient and the infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) of the transplanted cells. Homozygous urokinase plasminogen activator (uPA)‐SCID mice underwent transplantation with primary human hepatocytes, and at different times animals were bled and sacrificed to analyze plasma and liver tissue, respectively. The plasma of mice that were successfully transplanted contained albumin and an additional 21 human proteins. Liver histology showed progressive and massive replacement of diseased mouse tissue by human hepatocytes. These cells were accumulating glycogen but appeared otherwise normal and showed no signs of damage or death. They formed functional bile canaliculi that connected to mouse canaliculi. Besides mature hepatocytes, human hepatic progenitor cells that were differentiating into mature hepatocytes could be identified within liver parenchyma. Infection of chimeric mice with HBV or HCV resulted in an active infection that did not alter the liver function and architecture. Electron microscopy showed the presence of viral and subviral structures in HBV infected hepatocytes. In conclusion, human hepatocytes repopulate the uPA+/+‐SCID mouse liver in a very organized fashion with preservation of normal cell function. The presence of human hepatic progenitor cells in these chimeric animals necessitates a critical review of the observations and conclusions made in experiments with isolated “mature” hepatocytes. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270‐9139/suppmat/index.html). (HEPATOLOGY 2005;41:847–856.)


Proceedings of the National Academy of Sciences of the United States of America | 2009

Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans

Thomas Arnesen; Petra Van Damme; Bogdan Polevoda; Kenny Helsens; Rune Evjenth; Niklaas Colaert; Jan Erik Varhaug; Joël Vandekerckhove; Johan R. Lillehaug; Fred Sherman; Kris Gevaert

Nα-terminal acetylation is one of the most common protein modifications in eukaryotes. The COmbined FRActional DIagonal Chromatography (COFRADIC) proteomics technology that can be specifically used to isolate N-terminal peptides was used to determine the N-terminal acetylation status of 742 human and 379 yeast protein N termini, representing the largest eukaryotic dataset of N-terminal acetylation. The major N-terminal acetyltransferase (NAT), NatA, acts on subclasses of proteins with Ser-, Ala-, Thr-, Gly-, Cys- and Val- N termini. NatA is composed of subunits encoded by yARD1 and yNAT1 in yeast and hARD1 and hNAT1 in humans. A yeast ard1-Δ nat1-Δ strain was phenotypically complemented by hARD1 hNAT1, suggesting that yNatA and hNatA are similar. However, heterologous combinations, hARD1 yNAT1 and yARD1 hNAT1, were not functional in yeast, suggesting significant structural subunit differences between the species. Proteomics of a yeast ard1-Δ nat1-Δ strain expressing hNatA demonstrated that hNatA acts on nearly the same set of yeast proteins as yNatA, further revealing that NatA from humans and yeast have identical or nearly identical specificities. Nevertheless, all NatA substrates in yeast were only partially N-acetylated, whereas the corresponding NatA substrates in HeLa cells were mainly completely N-acetylated. Overall, we observed a higher proportion of N-terminally acetylated proteins in humans (84%) as compared with yeast (57%). N-acetylation occurred on approximately one-half of the human proteins with Met-Lys- termini, but did not occur on yeast proteins with such termini. Thus, although we revealed different N-acetylation patterns in yeast and humans, the major NAT, NatA, acetylates the same substrates in both species.


Electrophoresis | 2000

Protein identification methods in proteomics

Kris Gevaert; Joël Vandekerckhove

A combination of high‐resolution two‐dimensional (2‐D) polyacrylamide gel electrophoresis, highly sensitive biological mass spectrometry, and the rapidly growing protein and DNA databases has paved the way for high‐throughput proteomics. This review concentrates on protein identification. We first discuss the use of protein electroblotting and Edman sequencing as tools for de novo sequencing and protein identification. In the second part, we highlight matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) as one of the main contemporary analytical methods for linking gel‐separated proteins to entries in sequence databases. In this context we describe the two main MALDI‐MS‐based identification methods: (i) peptide mass fingerprinting, and (ii) post‐source decay (PSD) analysis. In the last part, we briefly emphasize the importance of sample preparation for obtaining highly sensitive and high‐quality MALDI‐MS spectra.


Cell Death & Differentiation | 2002

The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity.

G van Loo; M van Gurp; B Depuydt; Srinivasa M. Srinivasula; Ivan Rodriguez; E S Alnemri; Kris Gevaert; Joël Vandekerckhove; Wim Declercq; Peter Vandenabeele

Proteome analysis of supernatant of isolated mitochondria exposed to recombinant tBid, a proapoptotic Bcl-2 member, revealed the presence of the serine protease Omi, also called HtrA2. This release was prevented in mitochondria derived from Bcl-2-transgenic mice. Release of Omi under apoptotic conditions was confirmed in vivo in livers from mice injected with agonistic anti-Fas antibodies and was prevented in livers from Bcl-2 transgenic mice. Omi release also occurs in apoptotic dying but not in necrotic dying fibrosarcoma L929 cells, treated with anti-Fas antibodies and TNF, respectively. The amino acid sequence reveals the presence of an XIAP interaction motif at the N-terminus of mature Omi. We demonstrate an interaction between endogeneous Omi and recombinant XIAP. Furthermore we show that endogenous Omi is involved in enhanced activation of caspases in cytosolic extracts.


Cell | 2009

Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability

F-Nora Vögtle; Steffi Wortelkamp; René P. Zahedi; D Becker; C Leidhold; Kris Gevaert; J Kellermann; Wolfgang Voos; Albert Sickmann; Nikolaus Pfanner; Chris Meisinger

Many mitochondrial proteins are synthesized with N-terminal presequences that are removed by specific peptidases. The N-termini of the mature proteins and thus peptidase cleavage sites have only been determined for a small fraction of mitochondrial proteins and yielded a controversial situation for the cleavage site specificity of the major mitochondrial processing peptidase (MPP). We report a global analysis of the N-proteome of yeast mitochondria, revealing the N-termini of 615 different proteins. Significantly more proteins than predicted contained cleavable presequences. We identified the intermediate cleaving peptidase Icp55, which removes an amino acid from a characteristic set of MPP-generated N-termini, solving the controversial situation of MPP specificity and suggesting that Icp55 converts instable intermediates into stable proteins. Our results suggest that Icp55 is critical for stabilization of the mitochondrial proteome and illustrate how the N-proteome can serve as rich source for a systematic analysis of mitochondrial protein targeting, cleavage and turnover.


Nature Cell Biology | 2007

Caspase-14 protects against epidermal UVB photodamage and water loss.

Geertrui Denecker; Esther Hoste; Barbara Gilbert; Tino Hochepied; Petra Ovaere; Saskia Lippens; Caroline Van den Broecke; Petra Van Damme; Katharina D'Herde; Jean Pierre Hachem; Gaetan Borgonie; Richard B. Presland; Luc Schoonjans; Claude Libert; Joël Vandekerckhove; Kris Gevaert; Peter Vandenabeele; Wim Declercq

Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.


Molecular Cell | 2010

The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma.

Pieter Mestdagh; Anna-Karin Boström; Francis Impens; Erik Fredlund; Gert Van Peer; Pasqualino De Antonellis; Kristoffer von Stedingk; Bart Ghesquière; Stefanie Schulte; Michael Dews; Andrei Thomas-Tikhonenko; Johannes H. Schulte; Massimo Zollo; Alexander Schramm; Kris Gevaert; Håkan Axelson; Franki Speleman; Jo Vandesompele

The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains elusive. Using SILAC and quantitative mass spectrometry, we examined the effects of activation of the miR-17-92 cluster on global protein expression in neuroblastoma (NB) cells. Our results reveal cooperation between individual miR-17-92 miRNAs and implicate miR-17-92 in multiple hallmarks of cancer, including proliferation and cell adhesion. Most importantly, we show that miR-17-92 is a potent inhibitor of TGF-β signaling. By functioning both upstream and downstream of pSMAD2, miR-17-92 activation triggers downregulation of multiple key effectors along the TGF-β signaling cascade as well as direct inhibition of TGF-β-responsive genes.


Nature Methods | 2005

Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis

Petra Van Damme; Lennart Martens; Jozef Van Damme; An Staes; Joël Vandekerckhove; Kris Gevaert

We generated a comprehensive picture of protease substrates in anti-Fas–treated apoptotic human Jurkat T lymphocytes. We used combined fractional diagonal chromatography (COFRADIC) sorting of protein amino-terminal peptides coupled to oxygen-16 or oxygen-18 differential labeling. We identified protease substrates and located the exact cleavage sites within processed proteins. Our analysis yielded 1,834 protein identifications and located 93 cleavage sites in 71 proteins. Indirect evidence of apoptosis-specific cleavage within 21 additional proteins increased the total number of processed proteins to 92. Most cleavages were at caspase consensus sites; however, other cleavage specificities suggest activation of other proteases. We validated several new processing events by immunodetection and by an in vitro assay using recombinant caspases and synthetic peptides containing presumed cleavage sites. The spliceosome complex appeared a preferred target, as 14 of its members were processed. Differential isotopic labeling further revealed specific release of nucleosomal components from apoptotic nuclei.

Collaboration


Dive into the Kris Gevaert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evy Timmerman

Flanders Institute for Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Ghesquière

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge