Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kris Noel Dahl is active.

Publication


Featured researches published by Kris Noel Dahl.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Physical plasticity of the nucleus in stem cell differentiation

J. David Pajerowski; Kris Noel Dahl; Franklin L. Zhong; Paul J. Sammak; Dennis E. Discher

Cell differentiation in embryogenesis involves extensive changes in gene expression structural reorganization within the nucleus, including chromatin condensation and nucleoprotein immobilization. We hypothesized that nuclei in naive stem cells would therefore prove to be physically plastic and also more pliable than nuclei in differentiated cells. Micromanipulation methods indeed show that nuclei in human embryonic stem cells are highly deformable and stiffen 6-fold through terminal differentiation, and that nuclei in human adult stem cells possess an intermediate stiffness and deform irreversibly. Because the nucleo-skeletal component Lamin A/C is not expressed in either type of stem cell, we knocked down Lamin A/C in human epithelial cells and measured a deformability similar to that of adult hematopoietic stem cells. Rheologically, lamin-deficient states prove to be the most fluid-like, especially within the first ≈10 sec of deformation. Nuclear distortions that persist longer than this are irreversible, and fluorescence-imaged microdeformation with photobleaching confirms that chromatin indeed flows, distends, and reorganizes while the lamina stretches. The rheological character of the nucleus is thus set largely by nucleoplasm/chromatin, whereas the extent of deformation is modulated by the lamina.


Circulation Research | 2008

Nuclear Shape, Mechanics, and Mechanotransduction

Kris Noel Dahl; Alexandre J. S. Ribeiro; Jan Lammerding

In eukaryotic cells, the nucleus contains the genome and is the site of transcriptional regulation. The nucleus is the largest and stiffest organelle and is exposed to mechanical forces transmitted through the cytoskeleton from outside the cell and from force generation within the cell. Here, we discuss the effect of intra- and extracellular forces on nuclear shape and structure and how these force-induced changes could be implicated in nuclear mechanotransduction, ie, force-induced changes in cell signaling and gene transcription. We review mechanical studies of the nucleus and nuclear structural proteins, such as lamins. Dramatic changes in nuclear shape, organization, and stiffness are seen in cells where lamin proteins are mutated or absent, as in genetically engineered mice, RNA interference studies, or human disease. We examine the different mechanical pathways from the force-responsive cytoskeleton to the nucleus. We also highlight studies that link changes in nuclear shape with cell function during developmental, physiological, and pathological modifications. Together, these studies suggest that the nucleus itself may play an important role in the response of the cell to force.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome

Kris Noel Dahl; Paola Scaffidi; Mohammad F. Islam; Arjun G. Yodh; Katherine L. Wilson; Tom Misteli

The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson–Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.


ACS Nano | 2010

Carbon Nanotubes Reorganize Actin Structures in Cells and ex Vivo

Brian D. Holt; Philip A. Short; Andrew D. Rape; Yu-li Wang; Mohammad F. Islam; Kris Noel Dahl

The ability of globular actin to form filaments and higher-order network structures of the cytoskeleton is essential for cells to maintain their shape and perform essential functions such as force generation, motility, and division. Alterations of actin structures can dramatically change a cells ability to function. We found that purified and dispersed single wall carbon nanotubes (SWCNTs) can induce actin bundling in cells and in purified model actin systems. SWCNTs do not induce acute cell death, but cell proliferation is greatly reduced in SWCNT-treated cells with an increase in actin-related division defects. Actin, normally present in basal stress fibers in control cells, is located in heterogeneous structures throughout the SWCNT-treated cell. These SWCNT-induced changes in actin structures are seen functionally in multinucleated cells and with reduced force generation. Ex vivo, purified actin filaments cross-linked with alpha-actinin and formed isotropic networks, whereas SWCNTs caused purified actin filaments to assemble into bundles. While purified, isolated SWCNTs do not appear acutely toxic, this subcellular reorganization may cause chronic changes to cellular functions.


Journal of Nanobiotechnology | 2011

Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration

Peter N. Yaron; Brian D. Holt; Philip A. Short; Mathias Lösche; Mohammad F. Islam; Kris Noel Dahl

BackgroundCarbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs) through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments.ResultsSWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles.ConclusionsThese measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake.


Cytometry Part A | 2008

Deformation‐based nuclear morphometry: Capturing nuclear shape variation in HeLa cells

Gustavo K. Rohde; Alexandre J. S. Ribeiro; Kris Noel Dahl; Robert F. Murphy

The empirical characterization of nuclear shape distributions is an important unsolved problem with many applications in biology and medicine. Numerous genetic diseases and cancers have alterations in nuclear morphology, and methods for characterization of morphology could aid in both diagnoses and fundamental understanding of these disorders. Automated approaches have been used to measure features related to the size and shape of the cell nucleus, and statistical analysis of these features has often been performed assuming an underlying Euclidean (linear) vector space. We discuss the difficulties associated with the analysis of nuclear shape in light of the fact that shape spaces are nonlinear, and demonstrate methods for characterizing nuclear shapes and shape distributions based on spatial transformations that map one nucleus to another. By combining large deformation metric mapping with multidimensional scaling we offer a flexible approach for elucidating the intrinsic nonlinear degrees of freedom of a distribution of nuclear shapes. More specifically, we demonstrate approaches for nuclear shape interpolation and computation of mean nuclear shape. We also provide a method for estimating the number of free parameters that contribute to shape as well as an approach for visualizing most representative shape variations within a distribution of nuclei. The proposed methodology can be completely automated, is independent of the dimensionality of the images, and can handle complex shapes. Results obtained by analyzing two sets of images of HeLa cells are shown. In addition to identifying the modes of variation in normal HeLa nuclei, the effects of lamin A/C on nuclear morphology are quantitatively described.


Journal of Cell Science | 2011

Nucleoskeleton mechanics at a glance

Kris Noel Dahl; Agnieszka Kalinowski

The nucleus contains the genetic information of the cell and all of the regulatory factors that process the genome effectively. The genome is encapsulated by a dense, filamentous meshwork called the nucleoskeleton, which is located at the inner nuclear membrane. The components of the nucleoskeleton


Journal of Biomechanics | 2010

In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton.

Kris Noel Dahl; Elizabeth A. Booth-Gauthier; Benoit Ladoux

The nucleus is typically treated as the large phase-dense or easy-to-label structure at the center of the cell which is manipulated by the governing mechanical machinery inside the cytoplasm. However, recent evidence has suggested that the mechanical properties of the nucleus are important to cell fate. We will discuss many aspects of the structural and functional interconnections between nuclear mechanics and cellular mechanics in this review. There are numerous implications for the progression of many disease states associated with both nuclear structural proteins and cancers. The nucleus itself is a large organelle taking up significant volume within the cell, and most studies agree that nuclei are significantly stiffer than the surrounding cytoplasm. Thus when a cell is exposed to force, the nucleus is exposed to and helps resist that force. The nucleus and nucleoskeleton are interconnected with the cellular cytoskeleton, and these connections may aid in helping disperse forces within tissues and/or with mechanotransduction. During translocation and transmigration the nucleus can act as a resistive element. Understanding the role of mechanical regulation of the nucleus may aid in understanding cellular motility and crawling through confined geometries. Thus the nucleus plays a role in developing mechanical territories and niches, affecting rates of wound healing and allowing cells to transmigrate through tissues for developmental, repair or pathological means.


Journal of Biomechanics | 2008

Nuclear mechanotransduction: Response of the lamina to extracellular stress with implications in aging

Julia T. Philip; Kris Noel Dahl

Mechnotransduction, the phenomenon by which cells respond to applied force, is necessary for normal cell processes and is implicated in the pathology of several diseases including atherosclerosis. The exact mechanisms which govern how forces can affect gene expression have not been determined, but putative direct force effects on the genome would require transduction through the nuclear lamina. In this study we show that nuclei in cells exposed to shear stress significantly change shape, upregulate nuclear lamins and move lamins from the nuclear interior to the nuclear periphery. We hypothesize that the augmentation of the nuclear lamina at the nuclear periphery protects the nuclear interior from the force and allows a nuclear adaptation to shear stress. We also investigate the shear stress response of nuclei in cells that have been transfected with lamin A Delta50, which significantly stiffens nuclei. Lamin A Delta50 causes the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS) and models many aspects of normal aging. We find that the presence of lamin A Delta50 in only 30% of cells greatly reduces the response of the nuclear lamina in all cells in the flow field. We suggest that cells expressing lamin A Delta50 lack the ability to adapt to flow and may prevent neighboring cells from adapting as well. These results provide insight into the development of cardiovascular disease both in patients with HGPS and in normal aging.


Methods in Cell Biology | 2007

Nuclear Mechanics and Methods

Jan Lammerding; Kris Noel Dahl; Dennis E. Discher; Roger D. Kamm

The role of the nucleus in protecting and sequestering the genome is intrinsically mechanical, and disease-causing structural mutants in lamins and other components underscore this function. Various methods to measure nuclear mechanics, isolated or in situ, are outlined here in some detail.

Collaboration


Dive into the Kris Noel Dahl's collaboration.

Top Co-Authors

Avatar

Mohammad F. Islam

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Brian D. Holt

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Dennis E. Discher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine L. Wilson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhixia Zhong

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus J. Buehler

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge