Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kris Persaud is active.

Publication


Featured researches published by Kris Persaud.


Cancer Research | 2006

Inhibition of VEGFR-3 Activation with the Antagonistic Antibody More Potently Suppresses Lymph Node and Distant Metastases than Inactivation of VEGFR-2

Nicole Roberts; Bryan Kloos; Melanie R. Cassella; Simona Podgrabinska; Kris Persaud; Yan Wu; Bronislaw Pytowski; Mihaela Skobe

Lymph nodes are the first site of metastases for most types of cancer, and lymph node status is a key indicator of patient prognosis. Induction of tumor lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) has been shown to play an important role in promoting tumor metastases to lymph nodes. Here, we employed receptor-specific antagonist antibodies in an orthotopic spontaneous breast cancer metastasis model to provide direct evidence for the key role of VEGFR-3 activation in metastasis. Inhibition of VEGFR-3 activation more potently suppressed regional and distant metastases than inactivation of VEGFR-2, although VEGFR-2 blockade was more effective in inhibiting angiogenesis and tumor growth. Despite prominent proliferation, metastases were not vascularized in any of the control and treatment groups, indicating that the growth of metastases was not dependent on angiogenesis at the secondary site for the duration of the experiment. Systemic treatment with either VEGFR-2 or VEGFR-3 antagonistic antibodies suppressed tumor lymphangiogenesis, indicating that VEGFR-3 signaling affects the rate of tumor cell entry into lymphatic vessels through both lymphangiogenesis-dependent and independent mechanisms. Combination treatment with the anti-VEGFR-2 and anti-VEGFR-3 antibodies more potently decreased lymph node and lung metastases than each antibody alone. These results validate the concept of targeting the lymphatic dissemination and thereby very early steps of the metastatic process for metastasis control and suggest that a combination therapy with antiangiogenic agents may be a particularly promising approach for controlling metastases.


Cancer Research | 2007

Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth.

Pirjo Laakkonen; Marika Waltari; Tanja Holopainen; Takashi Takahashi; Bronislaw Pytowski; Philipp Steiner; Daniel J. Hicklin; Kris Persaud; James R. Tonra; Larry Witte; Kari Alitalo

Vascular endothelial growth factor receptor 3 (VEGFR-3) binds VEGF-C and VEGF-D and is essential for the development of the lymphatic vasculature. Experimental tumors that overexpress VEGFR-3 ligands induce lymphatic vessel sprouting and enlargement and show enhanced metastasis to regional lymph nodes and beyond, whereas a soluble form of VEGFR-3 that blocks receptor signaling inhibits these changes and metastasis. Because VEGFR-3 is also essential for the early blood vessel development in embryos and is up-regulated in tumor angiogenesis, we wanted to determine if an antibody targeting the receptor that interferes with VEGFR-3 ligand binding can inhibit primary tumor growth. Our results show that antibody interference with VEGFR-3 function can inhibit the growth of several human tumor xenografts in immunocompromised mice. Immunohistochemical analysis showed that the blood vessel density of anti-VEGFR-3-treated tumors was significantly decreased and hypoxic and necrotic tumor tissue was increased when compared with tumors treated with control antibody, indicating that blocking of the VEGFR-3 pathway inhibits angiogenesis in these tumors. As expected, the anti-VEGFR-3-treated tumors also lacked lymphatic vessels. These results suggest that the VEGFR-3 pathway contributes to tumor angiogenesis and that effective inhibition of tumor progression may require the inhibition of multiple angiogenic targets.


Journal of Cell Science | 2004

Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C

Kris Persaud; Jean-Christophe Tille; Meilin Liu; Zhenping Zhu; Xenia Jimenez; Daniel S. Pereira; Hua-Quan Miao; Laura Brennan; Larry Witte; Michael S. Pepper; Bronislaw Pytowski

In this report we utilize a novel antagonist antibody to the human VEGFR-3 to elucidate the role of this receptor in in vitro tubular morphogenesis of bovine and human endothelial cells (EC cells) induced by VEGF-C. The antibody hF4-3C5 was obtained by panning a human phage display library on soluble human VEGFR-3. The binding affinity constant of hF4-3C5 significantly exceeds that of the interaction of VEGFR-3 with VEGF-C. hF4-3C5 strongly inhibits the binding of soluble VEGFR-3 to immobilized VEGF-C and abolishes the VEGF-C-mediated mitogenic response of cells that expresses a chimeric human VEGFR-3-cFMS receptor. In fluorescence experiments, hF4-3C5 reactivity is observed with human lymphatic endothelial cells (LECs) and human umbilical vein endothelial cells (HUVECs). Binding of hF4-3C5 shows that about half of bovine aortic endothelial (BAE) cells express VEGFR-3 and cells in this subpopulation are primarily responsible for the chemotactic response to the mature form of VEGF-C (VEGF-CΔNΔC). This response was strongly inhibited by the addition of hF4-3C5. In vitro tube formation by BAE cells induced by VEGF-CΔNΔC was reduced by greater than 60% by hF4-3C5 whereas the response to VEGF165 was unaffected. Addition of hF4-3C5 together with an antagonist antibody to VEGFR-2 completely abolished the response to VEGF-CΔNΔC. Similar results were obtained with HUVECs. Together, these findings point to a role for VEGFR-3 in vascular tubular morphogenesis and highlight the utility of hF4-3C5 as a tool for the investigation of the biology of VEGFR-3.


Clinical Cancer Research | 2010

Anti–Transforming Growth Factor β Receptor II Antibody Has Therapeutic Efficacy against Primary Tumor Growth and Metastasis through Multieffects on Cancer, Stroma, and Immune Cells

Zhaojing Zhong; Kyla Carroll; Desiree Policarpio; Carla Osborn; Michael Gregory; Rajiv Bassi; Xenia Jimenez; Marie Prewett; Gregory Liebisch; Kris Persaud; Douglas Burtrum; Su Wang; David Surguladze; Stanley Ng; Heather Griffith; Paul Balderes; Jacqueline Doody; Jonathan D. Schwartz; Eric K. Rowinsky; Dale L. Ludwig; Larry Witte; Zhenping Zhu; Yan Wu

Purpose: Transforming growth factor β (TGFβ) is a pleiotropic cytokine that affects tumor growth, metastasis, stroma, and immune response. We investigated the therapeutic efficacy of anti–TGFβ receptor II (TGFβ RII) antibody in controlling metastasis and tumor growth as well as enhancing antitumor immunity in preclinical tumor models. Experimental Design: We generated neutralizing antibodies to TGFβ RII and assessed the antibody effects on cancer, stroma, and immune cells in vitro. The efficacy and mechanism of action of the antibody as monotherapy and in combination with chemotherapy in suppression of primary tumor growth and metastasis were evaluated in several tumor models. Results: Anti–TGFβ RII antibody blocked TGFβ RII binding to TGFβ 1, 2, and 3, and attenuated the TGFβ-mediated activation of downstream Smad2 kinase, invasion of cancer cells, motility of endothelial and fibroblast cells, and induction of immunosuppressive cells. Treatment with the antibody significantly suppressed primary tumor growth and metastasis and enhanced natural killer and CTL activity in tumor-bearing mice. Immunohistochemistry analysis showed cancer cell apoptosis and massive necrosis, and increased tumor-infiltrating T effector cells and decreased tumor-infiltrating Gr-1+ myeloid cells in the antibody-treated tumors. Fluorescence-activated cell sorting analysis indicated the significant reduction of peripheral Gr-1+/CD11b+ myeloid cells in treated animals. Concomitant treatment with the cytotoxic agent cyclophosphamide resulted in a significantly increased antitumor efficacy against primary tumor growth and metastasis. Conclusions: These preclinical data provide a foundation to support using anti–TGFβ RII antibody as a therapeutic agent for TGFβ RII–dependent cancer with metastatic capacity. Clin Cancer Res; 16(4); 1191–205


Molecular Cancer Therapeutics | 2005

A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3

Xenia Jimenez; Dan Lu; Laura Brennan; Kris Persaud; Meilin Liu; Hua-Quan Miao; Larry Witte; Zhenping Zhu

Vascular endothelial growth factors (VEGF) and their receptors (VEGFR) have been implicated to play important roles in tumor-associated angiogenesis and lymphangiogenesis, and hence in tumor growth and metastasis. We previously produced a number of fully human antibodies directed against VEGF receptor 2 (VEGFR2) and VEGF receptor 3 (VEGFR3) and showed that these antibodies are capable of inhibiting growth factor (VEGF and VEGF-C)-induced receptor activation, migration, and proliferation of human endothelial cells. In this report, we constructed and produced a bispecific antibody, a diabody, using the variable domain genes of two neutralizing antibodies, IMC-1121 to VEGFR2 and hF4-3C5 to VEGFR3. The diabody binds to both VEGFR2 and VEGFR3 in a dose-dependent manner, and blocks interaction between VEGF/VEGFR2, VEGF-C/VEGFR2, and VEGF-C/VEGFR3. In cell-based assays, the diabody neutralized both VEGF and VEGF-C-stimulated activation of VEGFR2, VEGFR3, and p44/p42 mitogen-activated protein kinase in endothelial cells. Furthermore, the diabody was able to inhibit both VEGF and VEGF-C-induced migration of endothelial cells. Taken together, our results suggest that a dual blockade of both VEGFR2 and VEGFR3 simultaneously may represent a more potent approach to effective cancer therapy.


Journal of Immunological Methods | 1999

Acquired antagonistic activity of a bispecific diabody directed against two different epitopes on vascular endothelial growth factor receptor 2.

Dan Lu; Helen Kotanides; Xenia Jimenez; Qinwei Zhou; Kris Persaud; Peter Bohlen; Larry Witte; Zhenping Zhu

Bispecific antibody (BsAb) technology has been successfully used as a means to construct novel antibody (Ab) molecules with increased avidity for binding, by combining two Ab or their fragments directed against different epitopes within the same antigen. Using two single chain antibodies (scFv) isolated from a phage display library, we have constructed a bispecific diabody directed against two different epitopes on the extracellular domain (ECD) of human vascular endothelial growth factor receptor 2 (VEGFR2), the kinase-insert domain-containing receptor (KDR). Neither of the parent scFv blocks KDR/VEGF interactions or inhibits VEGF-induced receptor activation. The diabody binds to KDR with an affinity that is 1.5- to 3-fold higher than its parent scFv, mainly due to a much slower dissociation rate (k(off)), which is approximately 17- to 26-fold slower than that of the individual scFv. In addition, the diabody binds simultaneously to, and thus cross-links, the two epitopes on the receptor(s). It is rather unexpected that the diabody effectively blocked KDR/VEGF interactions, and inhibited both VEGF-induced activation of the receptor and mitogenesis of human endothelial cells. Taken together, our results suggest that the diabody is most likely to exert its effect through steric hindrance and/or causing major conformational changes of the receptor. This is the first report on the construction of a bispecific diabody with acquired novel antagonistic activity.


Human antibodies | 2010

IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab

Dipa Patel; Xuemei Guo; Stanley Ng; Maxine Melchior; Paul Balderes; Douglas Burtrum; Kris Persaud; Xenia Luna; Dale L. Ludwig; Xiaoqiang Kang

PURPOSE To evaluate the antibody-dependent cellular cytotoxicity (ADCC) of cetuximab, an anti-epidermal growth factor receptor (EGFR) IgG1 antibody, in vitro. METHODS Binding to human Fc receptors was measured by ELISA. ADCC against a panel of tumor cell lines was evaluated using peripheral blood mononuclear cells or NK cells as effectors and lactate dehydrogenase release as a marker of cell killing. Cetuximab was compared with two glycan variants of cetuximab and with panitumumab, an anti-EGFR IgG2. RESULTS Cetuximab bound with high affinity to FcγRI (EC50 = 0.13 nM) and FcγRIIIa (EC50 = 6 nM) and effectively induced ADCC across multiple tumor cell lines. Panitumumab and aglycosylated cetuximab did not bind to FcγRI or FcγRIIIa nor have ADCC activity even at high effector-target cell ratios, even though the EGFR-binding affinity of cetuximab and panitumumab were shown to be comparable (KD = 87 pM and 83 pM, respectively). The extent of cetuximab-elicited ADCC was associated with the level of EGFR expression on tumor cells. CONCLUSIONS Cetuximab elicits effective ADCC activity against a wide range of tumor cells in vitro. This activity is dependent on antibody glycosylation and IgG1 isotype as well as tumor-cell EGFR expression. These findings suggest that ADCC may contribute to the antitumor activity of cetuximab.


Structure | 2011

The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

Matthew Franklin; Elizabeth Navarro; Yujie Wang; Sheetal Patel; Pinki Singh; Yi Zhang; Kris Persaud; Amtul Bari; Heather Griffith; Leyi Shen; Paul Balderes; Paul Kussie

The anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches.


Cancer Research | 2012

Abstract 3539: Anti-CSF-1R antibodies reduce tumor-associated macrophages and inhibit tumor growth in preclinical models

Jacqueline F. Doody; Sneha Mathew; Lan Wu; Yanxia Li; Ying Wang; Kris Persaud; Douglas Burtrum; Paul Balderes; David Surguladze; John S. Haurum; Dale L. Ludwig

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL In cancer, increased infiltration of macrophages within and surrounding the tumor mass correlates with increased tumor invasiveness and growth. In addition, presence of tumor-associated macrophages (TAMs) has been shown to correlate with poor prognosis, particularly in breast, prostate, ovarian and cervical cancer. TAM proliferation, differentiation and survival is dependent on Colony Stimulating Factor - 1 Receptor (CSF-1R) activation, a type III integral membrane tyrosine kinase receptor selectively expressed on cells of the mononuclear phagocyte lineage. Given that TAMs enhance tumor growth and that activation of the CSF-1R pathway is required for TAM function, an antibody against mouse CSF-1R was generated for proof-of-principle studies. CS7, a monoclonal anti-mouse CSF-1R antibody inhibited both CSF-1 and IL-34 binding to mouse CSF-1R, leading to inactivation of the receptor and downstream signaling molecules. In addition, CS7 prevented monocyte proliferation and macrophage differentiation with IC50s of 0.1 nM and 0.75 nM, respectively. In murine models of breast cancer using CSF-1-secreting MDA-MB-231, Hcc1954, 4T1 or EMT6 tumor cells, CS7 treatment led to a marked reduction in TAMs and an associated decrease in tumor growth. In contrast, breast tumor xenografts with CSF-1 non-secreting breast tumor cell lines JimT1 and MCF-7 had limited or no decrease in tumor volume following CS7 treatment. In prostate models, DU145 tumor cell line xenografts (CSF-1-secreting) but not PC3 (CSF-1 non-secreting) tumor growth was inhibited by CS7, recaptitulating the results seen with breast xenografts. Thus, in breast and prostate preclinical models, CSF-1 secretion by tumor cells is a prerequisite for sensitivity to anti-CSF-1R treatment. Taken together, targeting CSF-1R with a monoclonal antibody inhibits CSF-1R signaling via CSF-1 and IL-34, prevents monocytic to macrophage differentiation, and reduces tumor volume in preclinical models, validating CSF-1R as a target for therapeutic application in cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3539. doi:1538-7445.AM2012-3539


Molecular Cancer Therapeutics | 2011

Abstract A235: Anti-CSF-1R antibodies reduce tumor-associated macrophages and inhibit tumor growth in preclinical models.

Yanxia Li; Sneha Mathew; Lan Wu; Ying Wang; Jessica Kearney; Kris Persaud; Douglas Burtrum; Paul Balderes; David Surguladze; James R. Tonra; John S. Haurum; Dale L. Ludwig; Jacqueline F. Doody

In cancer, increased infiltration of macrophages within and surrounding the tumor mass correlates with increased tumor invasiveness and growth. In addition, presence of tumor-associated macrophages (TAMs) has been shown to correlate with poor prognosis, particularly in breast, prostate, ovarian, and cervical cancer. TAM proliferation, differentiation, and survival is dependent on CSF-1R activation, a type III integral membrane tyrosine kinase receptor selectively expressed on cells of the mononuclear phagocyte lineage. Given that TAMs enhance tumor growth and that activation of the CSF-1R pathway is required for TAM function, an antibody against mouse CSF-1R was generated for proof-of-principle studies. CS7, a monoclonal anti-mouse CSF-1R antibody inhibited both CSF-1 and IL-34 binding to mouse CSF-1R, leading to inactivation of the receptor and downstream signaling molecules. In addition, CS7 prevented monocyte proliferation and macrophage differentiation with IC50s of 0.1 nM and 0.75 nM, respectively. In murine models of breast cancer using CSF-1-secreting MDA-MB-231, Hcc1954, 4T1 or EMT6 tumor cells, CS7 treatment led to a marked reduction in TAMs and an associated decrease in tumor growth. In contrast, breast tumor xenografts with CSF-1 non-secreting breast tumor cell lines JimT1 and MCF-7 had limited or no decrease in tumor volume following CS7 treatment. In prostate models, DU145 tumor cell line xenografts (CSF-1-secreting) but not PC3 (CSF-1 non-secreting) tumor growth was inhibited by CS7, recaptitulating the results seen with breast xenografts. Thus, in breast and prostate preclinical models, CSF-1 secretion by tumor cells is a prerequisite for sensitivity to anti-CSF-1R treatment. Taken together, targeting CSF-1R with a monoclonal antibody inhibits CSF-1R signaling via CSF-1 and IL-34, prevents monocytic to macrophage differentiation, and reduces tumor volume in preclinical models, validating CSF-1R as a target for therapeutic application in cancer. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A235. Citation Format: Yanxia Li, Sneha Mathew, Lan Wu, Ying Wang, Kris Persaud, Douglas Burtrum, Paul Balderes, David Surguladze, John Haurum, Dale Ludwig, Jacqueline Doody. Anti-CSF-1R antibodies reduce tumor-associated macrophages and inhibit tumor growth in preclinical models. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A235.

Collaboration


Dive into the Kris Persaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge