Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kris Sigurdson is active.

Publication


Featured researches published by Kris Sigurdson.


Monthly Notices of the Royal Astronomical Society | 2013

A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment

Gregory Paciga; Joshua G. Albert; Kevin Bandura; Tzu-Ching Chang; Yashwant Gupta; Christopher M. Hirata; Julia Odegova; Ue-Li Pen; J. B. Peterson; J. Roy; J. Richard Shaw; Kris Sigurdson; Tabitha C. Voytek

The Giant Metrewave Radio Telescope Epoch of Reionization experiment is an ongoing effort to measure the power spectrum from neutral hydrogen at high redshift. We have previously reported an upper limit of (70 mK)^2 at wavenumbers of k ≈ 0.65 h Mpc^(−1) using a basic piecewise-linear foreground subtraction. In this paper, we explore the use of a singular value decomposition to remove foregrounds with fewer assumptions about the foreground structure. Using this method, we also quantify, for the first time, the signal loss due to the foreground filter and present new power spectra adjusted for this loss, providing a revised measurement of a 2σ upper limit at (248 mK)^2 for k = 0.50 h Mpc^(−1). While this revised limit is larger than previously reported, we believe it to be more robust and still represents the best current constraint on reionization at z ≈ 8.6.


Physical Review Letters | 2006

What mass are the smallest protohalos

Stefano Profumo; Kris Sigurdson; Marc Kamionkowski

We calculate the kinetic-decoupling temperature for weakly interacting massive particles (WIMPs) in supersymmetric (SUSY) and extra dimensional models that can account for the cold-dark-matter abundance determined from cosmic microwave background measurements. Depending on the parameters of the particle-physics model, a wide variety of decoupling temperatures is possible, ranging from several MeV to a few GeV. These decoupling temperatures imply a range of masses for the smallest protohalos much larger than previously thought--ranging from 10(-6)M(+ in a circle) to 10(2)M(+ in a circle). We expect the range of protohalos masses derived here to be characteristic of most particle-physics models that can thermally accommodate the required relic abundance of WIMP dark matter, even beyond SUSY and extra dimensions.


Physical Review Letters | 2010

Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

Hooman Davoudiasl; David E. Morrissey; Kris Sigurdson; Sean Tulin

We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.


Monthly Notices of the Royal Astronomical Society | 2011

The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6

Gregory Paciga; Tzu-Ching Chang; Yashwant Gupta; Rajaram Nityanada; Julia Odegova; Ue-Li Pen; J. B. Peterson; J. Roy; Kris Sigurdson

We present a new upper limit to the 21cm power spectrum during the Epoch of Reionization (EoR) which constrains reionization models with an unheated IGM. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission at redshift z � 9. Data from this redshift constrain models of the (EoR), the end of the Dark Ages arising from the formation of the first bright UV sources, probably stars or mini-quasars. We present results from approximately 50 hours of observations at the Giant Metrewave Radio Telescope in India from December 2007. We describe radio frequency interference (RFI) localisation schemes which allow bright sources on the ground to be identified and physically removed. Singular-value decomposition is used to remove remaining broadband RFI by identifying ground sources with large eigenvalues. Foregrounds are modelled using a piecewise linear filter and the power spectrum is measured using cross-correlations of foreground subtracted images.


Proceedings of SPIE | 2014

Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder

Kevin Bandura; Graeme E. Addison; M. Amiri; J. Richard Bond; D. Campbell-Wilson; Liam Connor; Jean-François Cliche; G. R. Davis; Meiling Deng; Nolan Denman; M. Dobbs; Mateus Fandino; Kenneth Gibbs; A. Gilbert; M. Halpern; David Hanna; Adam D. Hincks; G. Hinshaw; Carolin Höfer; Peter Klages; T. L. Landecker; Kiyoshi Masui; Juan Mena Parra; Laura Newburgh; Ue-Li Pen; J. B. Peterson; Andre Recnik; J. Richard Shaw; Kris Sigurdson; Mike Sitwell

A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beam forming that characterized previous designs. The Pathfinder consists of two cylinders 37m long by 20m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ~100 degrees by 1-2 degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ~30 cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800 MHz, and directly sampled at 800 MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation. The lessons learned from its implementation will be used to inform and improve the final CHIME design.


arXiv: Cosmology and Nongalactic Astrophysics | 2010

The GMRT-EoR Experiment: A new upper limit on the neutral hydrogen power spectrum at z 8.6

Gregory Paciga; Tzu-Ching Chang; Yashwant Gupta; Rajaram Nityanada; Julia Odegova; Ue-Li Pen; J. B. Peterson; J. Roy; Kris Sigurdson

We present a new upper limit to the 21cm power spectrum during the Epoch of Reionization (EoR) which constrains reionization models with an unheated IGM. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission at redshift z � 9. Data from this redshift constrain models of the (EoR), the end of the Dark Ages arising from the formation of the first bright UV sources, probably stars or mini-quasars. We present results from approximately 50 hours of observations at the Giant Metrewave Radio Telescope in India from December 2007. We describe radio frequency interference (RFI) localisation schemes which allow bright sources on the ground to be identified and physically removed. Singular-value decomposition is used to remove remaining broadband RFI by identifying ground sources with large eigenvalues. Foregrounds are modelled using a piecewise linear filter and the power spectrum is measured using cross-correlations of foreground subtracted images.


Monthly Notices of the Royal Astronomical Society | 2009

The GMRT EoR experiment: limits on polarized sky brightness at 150 MHz

Ue-Li Pen; Tzu-Ching Chang; Christopher M. Hirata; J. B. Peterson; J. Roy; Yashwant Gupta; Julia Odegova; Kris Sigurdson

The Giant Metrewave Radio Telescope (GMRT) reionization effort aims to map out the large-scale structure of the Universe during the epoch of reionization (EoR). Removal of polarized Galactic emission is a difficult part of any 21 cm EoR programme, and we present new upper limits to diffuse polarized foregrounds at 150 MHz. We find no high-significance evidence of polarized emission in our observed field at mid-galactic latitude (J2000 08^(h)26^(m)+26). We find an upper limit on the two-dimensional angular power spectrum of diffuse polarized foregrounds of (l^(2)C_l/2π)^(1/2) 0.03 h Mpc^(−1), k < 0.1 h Mpc^(−1). This can be compared to the expected EoR signal in total intensity of [k^(3)P(k)/2π^2]^(1/2) ~ 10 mK . We find that polarized structure is substantially weaker than suggested by extrapolation from higher frequency observations, so the new low upper limits reported here reduce the anticipated impact of these foregrounds on EoR experiments. We discuss the Faraday beam and depth depolarization models and compare predictions of these models to our data. We report on a new technique for polarization calibration using pulsars, as well as a new technique to remove broad-band radio frequency interference. Our data indicate that, on the edges of the main beam at the GMRT, polarization squint creates ~3 per cent leakage of unpolarized power into polarized maps at zero rotation measure. Ionospheric rotation was largely stable during these solar minimum nighttime observations.


Physical Review D | 2014

Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology

Francis-Yan Cyr-Racine; Roland de Putter; Alvise Raccanelli; Kris Sigurdson

If all or a fraction of the dark matter (DM) were coupled to a bath of dark radiation (DR) in the early Universe, we expect the combined DM-DR system to give rise to acoustic oscillations of the dark matter until it decouples from the DR. Much like the standard baryon acoustic oscillations, these dark acoustic oscillations (DAO) imprint a characteristic scale, the sound horizon of dark matter, on the matter power spectrum. We compute in detail how the microphysics of the DM-DR interaction affects the clustering of matter in the Universe and show that the DAO physics also gives rise to unique signatures in the temperature and polarization spectra of the cosmic microwave background (CMB). We use cosmological data from the CMB, baryon acoustic oscillations, and large-scale structure to constrain the possible fraction of interacting DM as well as the strength of its interaction with DR. Like nearly all knowledge we have gleaned about DM since inferring its existence this constraint rests on the betrayal by gravity of the location of otherwise invisible DM. Although our results can be straightforwardly applied to a broad class of models that couple dark matter particles to various light relativistic species, in order to make quantitative predictions, we model the interacting component as dark atoms coupled to a bath of dark photons. We find that linear cosmological data and CMB lensing put strong constraints on the existence of DAO features in the CMB and the large-scale structure of the Universe. Interestingly, we find that at most ∼5% of all DM can be very strongly interacting with DR. We show that our results are surprisingly constraining for the recently proposed double-disk DM model, a novel example of how large-scale precision cosmological data can be used to constrain galactic physics and subgalactic structure.


Physical Review D | 2016

ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe

Francis-Yan Cyr-Racine; Kris Sigurdson; Jesus Zavala; Torsten Bringmann; Mark Vogelsberger; Christoph Pfrommer

We formulate an effective theory of structure formation (ETHOS) that enables cosmological structure formation to be computed in almost any microphysical model of dark matter physics. This framework maps the detailed microphysical theories of particle dark matter interactions into the physical effective parameters that shape the linear matter power spectrum and the self-interaction transfer cross section of nonrelativistic dark matter. These are the input to structure formation simulations, which follow the evolution of the cosmological and galactic dark matter distributions. Models with similar effective parameters in ETHOS but with different dark particle physics would nevertheless result in similar dark matter distributions. We present a general method to map an ultraviolet complete or effective field theory of low-energy dark matter physics into parameters that affect the linear matter power spectrum and carry out this mapping for several representative particle models. We further propose a simple but useful choice for characterizing the dark matter self-interaction transfer cross section that parametrizes self-scattering in structure formation simulations. Taken together, these effective parameters in ETHOS allow the classification of dark matter theories according to their structure formation properties rather than their intrinsic particle properties, paving the way for future simulations to span the space of viable dark matter physics relevant for structure formation.


The Astrophysical Journal | 2014

ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES

J. Richard Shaw; Kris Sigurdson; Ue-Li Pen; Albert Stebbins; Michael Sitwell

In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

Collaboration


Dive into the Kris Sigurdson's collaboration.

Top Co-Authors

Avatar

Ue-Li Pen

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. B. Peterson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Halpern

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael Sitwell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Adam D. Hincks

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Carolin Höfer

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge