Krishn Pratap Singh
Rajendra Memorial Research Institute of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krishn Pratap Singh.
PLOS ONE | 2014
Asif Equbal; Shashi S. Suman; Shadab Anwar; Krishn Pratap Singh; Amir Zaidi; Abul Hasan Sardar; Pradeep Das; Vahab Ali
Kinetoplastids differ from other organisms in their ability to conjugate glutathione and spermidine to form trypanothione which is involved in maintaining redox homeostasis and removal of toxic metabolites. It is also involved in drug resistance, antioxidant mechanism, and defense against cellular oxidants. Trypanothione synthetase (TryS) of thiol metabolic pathway is the sole enzyme responsible for the biosynthesis of trypanothione in Leishmania donovani. In this study, TryS gene of L. donovani (LdTryS) was cloned, expressed, and fusion protein purified with affinity column chromatography. The purified protein showed optimum enzymatic activity at pH 8.0–8.5. The TryS amino acids sequences alignment showed that all amino acids involved in catalytic and ligands binding of L. major are conserved in L. donovani. Subcellular localization using digitonin fractionation and immunoblot analysis showed that LdTryS is localized in the cytoplasm. Furthermore, RT-PCR coupled with immunoblot analysis showed that LdTryS is overexpressed in Amp B resistant and stationary phase promastigotes (∼2.0-folds) than in sensitive strain and logarithmic phase, respectively, which suggests its involvement in Amp B resistance. Also, H2O2 treatment upto 150 µM for 8 hrs leads to 2-fold increased expression of LdTryS probably to cope up with oxidative stress generated by H2O2. Therefore, this study demonstrates stage- and Amp B sensitivity-dependent expression of LdTryS in L. donovani and involvement of TryS during oxidative stress to help the parasites survival.
PLOS ONE | 2014
Shadab Anwar; Manas Ranjan Dikhit; Krishn Pratap Singh; Rajiv Kumar Kar; Amir Zaidi; Ganesh Chandra Sahoo; Awadh Kishore Roy; Tomoyoshi Nozaki; Pradeep Das; Vahab Ali
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes.
Free Radical Biology and Medicine | 2014
Krishn Pratap Singh; Amir Zaidi; Shadab Anwar; Sanjeev Bimal; Pradeep Das; Vahab Ali
The cysteine desulfurase, IscS, is a highly conserved and essential component of the mitochondrial iron-sulfur cluster (ISC) system that serves as a sulfur donor for Fe-S clusters biogenesis. Fe-S clusters are versatile and labile cofactors of proteins that orchestrate a wide array of essential metabolic processes, such as energy generation and ribosome biogenesis. However, no information regarding the role of IscS or its regulation is available in Leishmania, an evolving pathogen model with rapidly developing drug resistance. In this study, we characterized LdIscS to investigate the ISC system in AmpB-sensitive vs resistant isolates of L. donovani and to understand its regulation. We observed an upregulated Fe-S protein activity in AmpB-resistant isolates but, in contrast to our expectations, LdIscS expression was upregulated in the sensitive strain. However, further investigations showed that LdIscS expression is positively correlated with ROS level and negatively correlated with Fe-S protein activity, independent of strain sensitivity. Thus, our results suggested that LdIscS expression is regulated by ROS level with Fe-S clusters/proteins acting as ROS sensors. Moreover, the direct evidence of a mechanism, in support of our results, is provided by dose-dependent induction of LdIscS-GFP as well as endogenous LdIscS in L. donovani promastigotes by three different ROS inducers: H2O2, menadione, and Amphotericin B. We postulate that LdIscS is upregulated for de novo synthesis or repair of ROS damaged Fe-S clusters. Our results reveal a novel mechanism for regulation of IscS expression that may help parasite survival under oxidative stress conditions encountered during infection of macrophages and suggest a cross talk between two seemingly unrelated metabolic pathways, the ISC system and redox metabolism in L. donovani.
Biochimie | 2016
Shashi S. Suman; Asif Equbal; Amir Zaidi; Md. Yousuf Ansari; Krishn Pratap Singh; Kuljit Singh; Bidyut Purkait; Ganesh Chandra Sahoo; Sanjeeva Bimal; Pradeep Das; Vahab Ali
Leishmania is a unicellular protozoan parasite which causes leishmaniasis, a neglected tropical disease. It possess a unique thiol metabolism comprising of several proteins among which, tryparedoxin (cTXN) and tryparedoxin peroxidase (cTXNPx), function in concert as oxidoreductases, utilizing trypanothione as a source of electrons to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is unique and essential for the survival of Leishmania. Herein, we report the functional characterization of Leishmania donovani cTXN and its interaction with cTXNPx. The full length recombinant cTXN and cTXNPx proteins were purified in the native state and biochemical analysis showed that the cTXN-cTXNPx coupled system efficiently degraded hydrogen peroxide and tert-butyl hydroperoxide by transferring reducing equivalents from trypanothione. In silico investigation of the potential interaction between cTXN and cTXNPx proteins showed strong interaction of model structures with amino acids Ile109, Thr132, Glu107, Trp70, Trp39, Cys40 and His129 of Ld-cTXN and Thr54, Lys93, Arg128 and Asn152 of Ld-cTXNPx predicted to be involved in interaction. Moreover, co-purification, pull down assay and immunoprecipitation studies confirmed the interaction between Ld-cTXN and Ld-cTXNPx proteins. In addition, for the first time, we demonstrated at the translational level that Ld-cTXN protein is upregulated in Amp B resistant isolates accompanied by enhanced peroxidase activity, as compared to sensitive strains. Thus, our results show that Ld-cTXN and Ld-cTXNPx proteins acts in concert by physical interaction to form a strong peroxide stress detoxification system in Leishmania and their upregulation in Amp B resistant isolates imparts better stress tolerance, and hence fitter pathogens, as compared to sensitive strains.
Molecular and Biochemical Parasitology | 2017
Amir Zaidi; Krishn Pratap Singh; Vahab Ali
Parasites of genus Leishmania are the causative agents of complex neglected diseases called leishmaniasis and continue to be a significant health concern globally. Iron is a vital nutritional requirement for virtually all organisms, including pathogenic trypanosomatid parasites, and plays a crucial role in many facets of cellular metabolism as a cofactor of several enzymes. Iron acquisition is essential for the survival of parasites. Yet parasites are also vulnerable to the toxicity of iron and reactive oxygen species. The aim of this review is to provide an update on the current knowledge about iron acquisition and usage by Leishmania species. We have also discussed about host strategy to modulate iron availability and the strategies deployed by Leishmania parasites to overcome iron withholding defences and thus favour parasite growth within host macrophages. Since iron plays central roles in the hosts response and parasite metabolism, a comprehensive understanding of the iron metabolism is beneficial to identify potential viable therapeutic opportunities against leishmaniasis.
Biochimie | 2015
Amir Zaidi; Krishn Pratap Singh; Shadab Anwar; Shashi S. Suman; Asif Equbal; Kuljit Singh; Manas Ranjan Dikhit; Sanjeeva Bimal; Krishna Pandey; Pradeep Das; Vahab Ali
Leishmania donovani is a unicellular protozoon parasite that causes visceral leishmaniasis (VL), which is a fatal disease if left untreated. Certain Fe-S proteins of the TCA cycle and respiratory chain have been found in the Leishmania parasite but the precise mechanisms for their biogenesis and the maturation of Fe-S clusters remains unknown. Fe-S clusters are ubiquitous cofactors of proteins that perform critical cellular functions. The clusters are biosynthesized by the mitochondrial Iron-Sulphur Cluster (ISC) machinery with core protein components that include the catalytic cysteine desulphurase IscS, the scaffold proteins IscU and IscA, and frataxin as an iron carrier/donor. However, no information regarding frataxin, its regulation, or its role in drug resistance is available for the Leishmania parasite. In this study, we characterized Ld-frataxin to investigate its role in the ISC machinery of L. donovani. We expressed and purified the recombinant Ld-frataxin protein and observed its interaction with Ld-IscU by co-purification and pull-down assay. Furthermore, we observed that the cysteine desulphurase activity of the purified Ld-IscS protein was stimulated in the presence of Ld-frataxin and Ld-IscU, particularly in the presence of iron; neither Ld-frataxin nor Ld-IscU alone had significant effects on Ld-IscS activity. Interestingly, RT-PCR and western blotting showed that Ld-frataxin is upregulated in AmpB-resistant isolates compared to sensitive strains, which may support higher Fe-S protein activity in AmpB-resistant L. donovani. Additionally, Ld-frataxin was localized in the mitochondria, as revealed by digitonin fractionation and indirect immunofluorescence. Thus, our results suggest the role of Ld-frataxin as an iron binding/carrier protein for Fe-S cluster biogenesis that physically interacts with other core components of the ISC machinery within the mitochondria.
BioMed Research International | 2015
Mohammad Sohail; Shayan Shakeel; Shweta Kumari; Aakanksha Bharti; Faisal Zahid; Shadab Anwar; Krishn Pratap Singh; Mazahirul Islam; Ajay Kumar Sharma; Sneh Lata; Vahab Ali; Tridibes Adak; Pradeep Das; Mohammad Raziuddin
The escalating burden, pathogenesis, and clinical sequel of malaria during pregnancy have combinatorial adverse impact on both mother and foetus that further perplexed the situation of diagnosis, treatment, and prevention. This prompted us to evaluate the status of population at risk of MIP in Hazaribag, Jharkhand, India. Cross-sectional study was conducted over a year at Sadar Hospital, Hazaribag. Malaria was screened using blood smear and/or RDT. Anaemia was defined as haemoglobin concentration. Pretested questionnaires were used to gather sociodemographic, clinical, and obstetrical data. The prevalence of MIP was 5.4% and 4.3% at ANC and DU, and 13.2% malaria was in women without pregnancy. Interestingly, majority were asymptomatically infected with P. vivax (over 85%) at ANC and DU. Peripheral parasitemia was significantly associated with fever within past week, rural origin of subjects, and first/second pregnancies in multivariate analysis, with the highest risk factor associated with fever followed by rural residence. Strikingly in cohort, anaemia was prevalent in 86% at ANC as compared to 72% at DU, whereas severe anaemia was 13.6% and 7.8% at ANC and DU. Even more anaemia prevalence was observed in MIP group (88% and 89% at ANC and DU), whereas severe anaemia was 23% and 21%, respectively. In view of observed impact of anaemia, parasitemia and asymptomatic infection of P. vivax during pregnancy and delivery suggest prompt diagnosis regardless of symptoms and comprehensive drug regime should be offered to pregnant women in association with existing measures in clinical spectrum of MIP, delivery, and its outcome.
Redox biology | 2017
Kuljit Singh; Vahab Ali; Krishn Pratap Singh; Parool Gupta; Shashi S. Suman; Ayan Kumar Ghosh; Sanjiva Bimal; Krishna Pandey; Pradeep Das
Leishmania donovani is the causative organism of the neglected human disease known as visceral leishmaniasis which is often fatal, if left untreated. The cysteine biosynthesis pathway of Leishmania may serve as a potential drug target because it is different from human host and regulates downstream components of redox metabolism of the parasites; essential for their survival, pathogenicity and drug resistance. However, despite the apparent dependency of redox metabolism of cysteine biosynthesis pathway, the role of L. donovani cysteine synthase (LdCS) in drug resistance and redox homeostasis has been unexplored. Herein, we report that over-expression of LdCS in Amphotericin B (Amp B) sensitive strain (S1-OE) modulates resistance towards oxidative stress and drug pressure. We observed that antioxidant enzyme activities were up-regulated in S1-OE parasites and these parasites alleviate intracellular reactive oxygen species (ROS) efficiently by maintaining the reduced thiol pool. In contrast to S1-OE parasites, Amp B sensitive strain (S1) showed higher levels of ROS which was positively correlated with the protein carbonylation levels and negatively correlated with cell viability. Moreover, further investigations showed that LdCS over-expression also augments the ROS-primed induction of LdCS-GFP as well as endogenous LdCS and thiol pathway proteins (LdTryS, LdTryR and LdcTXN) in L. donovani parasites; which probably aids in stress tolerance and drug resistance. In addition, the expression of LdCS was found to be up-regulated in Amp B resistant isolates and during infective stationary stages of growth and consistent with these observations, our ex vivo infectivity studies confirmed that LdCS over-expression enhances the infectivity of L. donovani parasites. Our results reveal a novel crosstalk between LdCS and thiol metabolic pathway proteins and demonstrate the crucial role of LdCS in drug resistance and redox homeostasis of Leishmania.
International Journal of Biological Macromolecules | 2018
Krishn Pratap Singh; Shadab Anwar; Amir Zaidi; Kuljit Singh; Pradeep Das; Samudrala Gourinath; Vahab Ali
The pathogenicity of protozoan parasites is frequently attributed to their ability to circumvent the deleterious effects of ROS and Fe-S clusters are among their susceptible targets with paramount importance for parasite survival. The biogenesis of Fe-S clusters is orchestrated by ISC system; the sulfur donor IscS and scaffold protein IscU being its core components. However, among protozoan parasites including Leishmania, no information is available regarding biochemical aspect of IscU, its interaction partners and regulation. Here, we show that Leishmania donovani IscU homolog, LdIscU, readily assembles [2Fe-2S] clusters and, interestingly, follows Michaelis-Menten enzyme kinetics. It is localized in the mitochondria of the parasite and interacts with LdIscS to form a stable complex. Additionally, LdIscU and Fe-S proteins activity is significantly upregulated in resistant isolates and during stationary growth stage indicating an association between them. The differential expression of LdIscU modulated by Fe-S proteins demand suggests its potential role in parasite survival and drug resistance. Thus, our study provides novel insight into the Fe-S scaffold protein of a protozoan parasite.
Cytokine | 2018
Shashi S. Suman; Ajay Amit; Krishn Pratap Singh; Parool Gupta; Asif Equbal; Arti Kumari; Roshan Kamal Topno; Vidyananda Ravidas; Krishna Pandey; Sanjiva Bimal; Pradeep Das; Vahab Ali
HighlightsCytosolic tryparedoxin (cTXN) is a crucial oxidoreductase protein of thiol metabolic cascade.cTXN protein supplementation enhances in vitro growth rate of L. donovani promastigotes.It modulates the disease outcome by shifting immune response towards Th2 arm of adaptive immunity. Abstract Leishmaniasis is a neglected tropical disease caused by the unicellular protozoan parasite of genus Leishmania. Tryparedoxin (TXN) is a low molecular mass dithiol protein belonging to oxidoreductases super‐family; which function in concert with tryparedoxin peroxidase (TXNPx) as a system in protozoan parasites including Leishmania. Leishmanial hydroperoxides detoxification cascade uses trypanothione as electron donor to reduce hydroperoxide inside the macrophages during infection. However, the mechanism by which tryparedoxin can contribute in progression of visceral leishmaniasis (VL) and its impact on host’s cellular immune response during infection in Indian VL patient is unknown. In this study, we purified a ˜17 kDa recombinant cytosolic tryparedoxin (cTXN) protein of Leishmania donovani (rLdcTXN) and investigated its immunological responses in peripheral blood monocytes (PBMC) isolated from VL patients. The protein significantly enhanced the promastigotes count after 96 h of culture showing a direct correlation with parasite growth. Furthermore, stimulation of PBMC isolated from VL patients with rLdcTXN resulted in up‐regulation of IL‐4 and IL‐10 production whereas IL‐12 and IFN‐&ggr; was significantly down‐regulated suggesting a pivotal role of cTXN in provoking the immune suppression during VL. Our study demonstrates the importance of cTXN protein which can potentially modulate the outcome of disease through suppressing host protective Th1 response in VL patients.
Collaboration
Dive into the Krishn Pratap Singh's collaboration.
Rajendra Memorial Research Institute of Medical Sciences
View shared research outputsRajendra Memorial Research Institute of Medical Sciences
View shared research outputsRajendra Memorial Research Institute of Medical Sciences
View shared research outputs