Krishna K. Niyogi
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krishna K. Niyogi.
Nature | 2000
Xiao-Ping Li; Olle Björkman; Connie Shih; Arthur R. Grossman; Magnus Rosenquist; Stefan Jansson; Krishna K. Niyogi
Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plants capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis. These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.
The Plant Cell | 1998
Krishna K. Niyogi; Arthur R. Grossman; Olle Björkman
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.
Annual Review of Plant Biology | 2009
Zhirong Li; Setsuko Wakao; Beat B. Fischer; Krishna K. Niyogi
Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
Nature | 2009
Graham Peers; Thuy B. Truong; Elisabeth Ostendorf; Andreas E. Busch; Dafna Elrad; Arthur R. Grossman; Michael Hippler; Krishna K. Niyogi
Light is necessary for photosynthesis, but its absorption by pigment molecules such as chlorophyll can cause severe oxidative damage and result in cell death. The excess absorption of light energy by photosynthetic pigments has led to the evolution of protective mechanisms that operate on the timescale of seconds to minutes and involve feedback-regulated de-excitation of chlorophyll molecules in photosystem II (qE). Despite the significant contribution of eukaryotic algae to global primary production, little is known about their qE mechanism, in contrast to that in flowering plants. Here we show that a qE-deficient mutant of the unicellular green alga Chlamydomonas reinhardtii, npq4, lacks two of the three genes encoding LHCSR (formerly called LI818). This protein is an ancient member of the light-harvesting complex superfamily, and orthologues are found throughout photosynthetic eukaryote taxa, except in red algae and vascular plants. The qE capacity of Chlamydomonas is dependent on environmental conditions and is inducible by growth under high light conditions. We show that the fitness of the npq4 mutant in a shifting light environment is reduced compared to wild-type cells, demonstrating that LHCSR is required for survival in a dynamic light environment. Thus, these data indicate that plants and algae use different proteins to dissipate harmful excess light energy and protect the photosynthetic apparatus from damage.
Science | 2008
Tae Kyu Ahn; Thomas J. Avenson; Matteo Ballottari; Yuan-Chung Cheng; Krishna K. Niyogi; Roberto Bassi; Graham R. Fleming
Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can “tune” the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Xiao-Ping Li; Patricia Müller-Moulé; Adam M. Gilmore; Krishna K. Niyogi
Feedback de-excitation (qE) regulates light harvesting in plants to prevent inhibition of photosynthesis when light absorption exceeds photosynthetic capacity. Although the mechanism of qE is not completely understood, it is known to require a low thylakoid lumen pH, de-epoxidized xanthophylls, and the photosystem II protein PsbS. During a short-term 4-h exposure to excess light, three PsbS- and qE-deficient Arabidopsis thaliana mutants that differed in xanthophyll composition were more photoinhibited than the wild type. The extent of photoinhibition was the same in all of the mutants, suggesting that qE capacity rather than xanthophyll composition is critical for photoprotection in short-term high light, in contrast to longer-term high light conditions (days) when additional antioxidant roles of specific xanthophylls are evident. Plants with a 2-fold increase in qE capacity were generated by overexpression of PsbS, demonstrating that the level of PsbS limits the qE capacity in wild-type Arabidopsis. These results are consistent with the idea that variations in PsbS expression are responsible for species-specific and environmentally induced differences in qE capacity observed in nature. Furthermore, plants with higher qE capacity were more resistant to photoinhibition than the wild type. Increased qE was associated with decreased photosystem II excitation pressure and changes in the fractional areas of chlorophyll a fluorescence lifetime distributions, but not the lifetime centers, suggesting that qE protects from photoinhibition by preventing overreduction of photosystem II electron acceptors. Engineering of qE capacity by PsbS overexpression could potentially yield crop plants that are more resistant to environmental stress.
The Plant Cell | 1997
Krishna K. Niyogi; Olle Björkman; Arthur R. Grossman
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron transport, and it is also correlated with the amounts of zeaxanthin and antheraxanthin that are formed from violaxanthin by the operation of the xanthophyll cycle. To perform a genetic dissection of nonphotochemical quenching, we have isolated npq mutants of Chlamydomonas by using a digital video-imaging system. In excessive light, the npq1 mutant is unable to convert violaxanthin to antheraxanthin and zeaxanthin; this reaction is catalyzed by violaxanthin de-epoxidase. The npq2 mutant appears to be defective in zeaxanthin epoxidase activity, because it accumulates zeaxanthin and completely lacks antheraxanthin and violaxanthin under all light conditions. Characterization of these mutants demonstrates that a component of nonphotochemical quenching that develops in vivo in Chlamydomonas depends on the accumulation of zeaxanthin and antheraxanthin via the xanthophyll cycle. However, observation of substantial, rapid, [delta]pH-dependent nonphotochemical quenching in the npq1 mutant demonstrates that the formation of zeaxanthin and antheraxanthin via violaxanthin de-epoxidase activity is not required for all [delta]pH-dependent nonphotochemical quenching in this alga. Furthermore, the xanthophyll cycle is not required for survival of Chlamydomonas in excessive light.
The Plant Cell | 2005
Salah E. Abdel-Ghany; Patricia Müller-Moulé; Krishna K. Niyogi; Marinus Pilon; Toshiharu Shikanai
Copper delivery to the thylakoid lumen protein plastocyanin and the stromal enzyme Cu/Zn superoxide dismutase in chloroplasts is required for photosynthesis and oxidative stress protection. The copper delivery system in chloroplasts was characterized by analyzing the function of copper transporter genes in Arabidopsis thaliana. Two mutant alleles were identified of a previously uncharacterized gene, PAA2 (for P-type ATPase of Arabidopsis), which is required for efficient photosynthetic electron transport. PAA2 encodes a copper-transporting P-type ATPase with sequence similarity to PAA1, which functions in copper transport in chloroplasts. Both proteins localized to the chloroplast, as indicated by fusions to green fluorescent protein. The PAA1 fusions were found in the chloroplast periphery, whereas PAA2 fusions were localized in thylakoid membranes. The phenotypes of paa1 and paa2 mutants indicated that the two transporters have distinct functions: whereas both transporters are required for copper delivery to plastocyanin, copper delivery to the stroma is inhibited only in paa1 but not in paa2. The effects of paa1 and paa2 on superoxide dismutase isoform expression levels suggest that stromal copper levels regulate expression of the nuclear genes IRON SUPEROXIDE DISMUTASE1 and COPPER/ZINC SUPEROXIDE DISMUTASE2. A paa1 paa2 double mutant was seedling-lethal, underscoring the importance of copper to photosynthesis. We propose that PAA1 and PAA2 function sequentially in copper transport over the envelope and thylakoid membrane, respectively.
Plant Physiology | 2011
Erik H. Murchie; Krishna K. Niyogi
Light is of course essential for photosynthesis and supports most life on earth. However, light intensity and spectral quality are highly variable in space and time according to time of day, season, geography, climate, and the position of leaf within canopy and cell within leaf. This has resulted in
The Plant Cell | 2003
Irene Baroli; An D. Do; Tomoko Yamane; Krishna K. Niyogi
Xanthophylls participate in light harvesting and are essential in protecting the chloroplast from photooxidative damage. To investigate the roles of xanthophylls in photoprotection, we isolated and characterized extragenic suppressors of the npq1 lor1 double mutant of Chlamydomonas reinhardtii, which lacks zeaxanthin and lutein and undergoes irreversible photooxidative bleaching and cell death at moderate to high light intensities. Here, we describe three suppressor strains that carry point mutations in the coding sequence of the zeaxanthin epoxidase gene, resulting in the constitutive accumulation of zeaxanthin in a range of concentrations. The presence of zeaxanthin in these strains was sufficient to prevent photooxidative damage in the npq1 lor1 background. The size of the light-harvesting antenna in the suppressors decreased in high light in a manner that was proportional to the relative content of zeaxanthin, with the strain having the most zeaxanthin showing a severe reduction in levels of the major light-harvesting complex II proteins in high light. We show that the effect of constitutive zeaxanthin on light harvesting is not the main cause of increased photoprotection, because in the absence of zeaxanthin, a strain with a smaller light-harvesting antenna showed only minor protection against photobleaching in high light. Furthermore, the zeaxanthin-accumulating suppressors were able to tolerate higher levels of exogenous reactive oxygen than their parental strain under conditions that did not affect light harvesting. Our results are consistent with an antioxidant role of zeaxanthin in the quenching of singlet oxygen and/or free radicals in the thylakoid membrane in vivo.