Krishna Kanti Dey
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krishna Kanti Dey.
Journal of the American Chemical Society | 2013
Samudra Sengupta; Krishna Kanti Dey; Hari S. Muddana; Tristan Tabouillot; Michael E. Ibele; Peter J. Butler; Ayusman Sen
Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.
Nature Chemistry | 2014
Samudra Sengupta; Debabrata Patra; Isamar Ortiz-Rivera; Arjun Agrawal; Sergey Shklyaev; Krishna Kanti Dey; Ubaldo M. Córdova-Figueroa; Thomas E. Mallouk; Ayusman Sen
Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.
Small | 2013
Krishna Kanti Dey; Satyapriya Bhandari; Dipankar Bandyopadhyay; Saurabh Basu; Arun Chattopadhyay
A Pd nanoparticle-containing polymer microsphere moves with increasing speed across a pH gradient, following differential catalytic decomposition of aqueous hydrogen peroxide. The directional motion is akin to the pH taxis of living microorganisms. The artificial pH taxis exhibits random walk, translation, vertical, hopping, and pulsed motion, when the size of the motor and the imposed pH gradient are modulated.
Nano Letters | 2015
Krishna Kanti Dey; Xi Zhao; Benjamin M. Tansi; Wilfredo J. Méndez-Ortiz; Ubaldo M. Córdova-Figueroa; Ramin Golestanian; Ayusman Sen
Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.
ACS Nano | 2014
Krishna Kanti Dey; Sambeeta Das; Matthew F. Poyton; Samudra Sengupta; Peter J. Butler; Paul S. Cremer; Ayusman Sen
We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.
ACS Nano | 2014
Samudra Sengupta; Michelle M. Spiering; Krishna Kanti Dey; Wentao Duan; Debabrata Patra; Peter J. Butler; R. Dean Astumian; Stephen J. Benkovic; Ayusman Sen
DNA polymerase is responsible for synthesizing DNA, a key component in the running of biological machinery. Using fluorescence correlation spectroscopy, we demonstrate that the diffusive movement of a molecular complex of DNA template and DNA polymerase enhances during nucleotide incorporation into the growing DNA template. The diffusion coefficient of the complex also shows a strong dependence on its inorganic cofactor, Mg2+ ions. When exposed to gradients of either nucleotide or cofactor concentrations, an ensemble of DNA polymerase complex molecules shows collective movement toward regions of higher concentrations. By immobilizing the molecular complex on a patterned gold surface, we demonstrate the fabrication of DNA polymerase-powered fluid pumps. These miniature pumps are capable of transporting fluid and tracer particles in a directional manner with the pumping speed increasing in the presence of the cofactor. The role of DNA polymerase as a micropump opens up avenues for designing miniature fluid pumps using enzymes as engines.
Journal of the American Chemical Society | 2017
Krishna Kanti Dey; Ayusman Sen
Self-propelled, synthetic active matters that transduce chemical energy into mechanical motion are examples of biomimetic nonequilibrium systems. They are of great current interest, with potential applications in nanomachinery, nanoscale assembly, fluidics, and chemical/biochemical sensing. Many of the physical challenges associated with generating motility on the micro- and nanoscale have recently been overcome, leading to the first generation of autonomous motors and pumps on scales ranging from microns to nanometers. This perspective focuses on catalytically powered motile systems, outlining major advances to date in motor/pump design, propulsion mechanisms and directional control, and intermotor communications leading to collective behavior. We conclude by discussing the possible future directions, from the fundamental questions that remain to be addressed to the design principles required for useful applications.
Journal of Colloid and Interface Science | 2010
Krishna Kanti Dey; Biswa Ranjan Panda; Anumita Paul; Saurabh Basu; Arun Chattopadhyay
Gold nanoparticle (Au NP) catalyzed decomposition of alkaline hydrogen peroxide has been utilized in driving chemical locomotives in a liquid. Au NPs deposited on spherical micron sized polymer resin beads catalyzed the decomposition of H(2)O(2) in the pH range 9.1-10.8. The O(2) gas bubbles produced in the decomposition moved the beads upward with average velocities that depended on the pH of the solution. The measured average velocity of the bead increased with the increase in pH in the range 9.1-10.8. Above this pH, the self-decomposition of H(2)O(2) produced sufficient bubbles in the medium that made the motion haphazard and thus prevented a clear measurement of the velocity. The observed accelerated motion of the locomotive has been explained by considering the time-dependent growth of O(2) gas bubbles on the polymer, while taking into consideration desorption and other factors.
Journal of Chemical Physics | 2015
Brennan J. Walder; Krishna Kanti Dey; Michael C. Davis; Jay H. Baltisberger; Philip J. Grandinetti
A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of (2)H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl2⋅2D2O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the (2)H quadrupolar coupling parameters are 〈Cq〉 = 118.1 kHz and 〈ηq〉 = 0.88, and the (2)H paramagnetic shift tensor anisotropy parameters are 〈ζP〉 = - 152.5 ppm and 〈ηP〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=(π2,π2,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.
Journal of Chemical Physics | 2008
Krishna Kanti Dey; Deepika Sharma; Saurabh Basu; Arun Chattopadhyay
The motion of micron-sized catalytic polymer beads coated with thin film or nanoparticle form of Ni in aqueous H(2)O(2) is reported herein. In the absence of any magnetic field, the beads moved vertically upward in the medium, owing to sufficient bubbles deposited on them following catalytic decomposition of H(2)O(2) by Ni. However, in the presence of an external magnetic field (perpendicular to the direction of motion), angular deviation in the motion is observed, with the deviations increasing with the strength of the field. The results are explained based on a model involving interaction of the beads with the external magnetic field.