Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krishnan MohanKumar is active.

Publication


Featured researches published by Krishnan MohanKumar.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: evidence from an animal model

Krishnan MohanKumar; Niroop Kaza; Ramasamy Jagadeeswaran; Steven A. Garzon; Anchal Bansal; Ashish Kurundkar; Kopperuncholan Namachivayam; Juan I. Remon; C. Rekha Bandepalli; Xu Feng; Joern Hendrik Weitkamp

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. In tissue samples of NEC, we identified numerous macrophages and a few neutrophils but not many lymphocytes. We hypothesized that these pathoanatomic characteristics of NEC represent a common tissue injury response of the gastrointestinal tract to a variety of insults at a specific stage of gut development. To evaluate developmental changes in mucosal inflammatory response, we used trinitrobenzene sulfonic acid (TNBS)-induced inflammation as a nonspecific insult and compared mucosal injury in newborn vs. adult mice. Enterocolitis was induced in 10-day-old pups and adult mice (n = 25 animals per group) by administering TNBS by gavage and enema. Leukocyte populations were enumerated in human NEC and in murine TNBS-enterocolitis using quantitative immunofluorescence. Chemokine expression was measured using quantitative polymerase chain reaction, immunoblots, and immunohistochemistry. Macrophage recruitment was investigated ex vivo using intestinal tissue-conditioned media and bone marrow-derived macrophages in a microchemotaxis assay. Similar to human NEC, TNBS enterocolitis in pups was marked by a macrophage-rich leukocyte infiltrate in affected tissue. In contrast, TNBS-enterocolitis in adult mice was associated with pleomorphic leukocyte infiltrates. Macrophage precursors were recruited to murine neonatal gastrointestinal tract by the chemokine CXCL5, a known chemoattractant for myeloid cells. We also demonstrated increased expression of CXCL5 in surgically resected tissue samples of human NEC, indicating that a similar pathway was active in NEC. We concluded that gut mucosal injury in the murine neonate is marked by a macrophage-rich leukocyte infiltrate, which contrasts with the pleomorphic leukocyte infiltrates in adult mice. In murine neonatal enterocolitis, macrophages were recruited to the inflamed gut mucosa by the chemokine CXCL5, indicating that CXCL5 and its cognate receptor CXCR2 merit further investigation as potential therapeutic targets in NEC.


American Journal of Respiratory Cell and Molecular Biology | 2011

Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

Jaideep Honavar; Andrey A. Samal; Kelley M. Bradley; Angela Brandon; Joann Balanay; Giuseppe L. Squadrito; Krishnan MohanKumar; Edward M. Postlethwait; Sadis Matalon; Rakesh P. Patel

Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Smad7 inhibits autocrine expression of TGF-β2 in intestinal epithelial cells in baboon necrotizing enterocolitis

Kopperuncholan Namachivayam; Cynthia L. Blanco; Krishnan MohanKumar; Ramasamy Jagadeeswaran; Margarita M. Vasquez; Lisa L. McGill-Vargas; Steven A. Garzon; Sunil K. Jain; Ravinder K. Gill; Nancy E. Freitag; Jörn-Hendrik Weitkamp; Steven R. Seidner

Preterm infants may be at risk of necrotizing enterocolitis (NEC) due to deficiency of transforming growth factor-β 2 (TGF-β(2)) in the developing intestine. We hypothesized that low epithelial TGF-β(2) expression in preterm intestine and during NEC results from diminished autocrine induction of TGF-β(2) in these cells. Premature baboons delivered at 67% gestation were treated per current norms for human preterm infants. NEC was diagnosed by clinical and radiological findings. Inflammatory cytokines, TGF-β(2), Smad7, Ski, and strawberry notch N (SnoN)/Ski-like oncoprotein (SKIL) was measured using quantitative reverse transcriptase-polymerase chain reaction, immunoblots, and immunohistochemistry. Smad7 effects were examined in transfected IEC6 intestinal epithelial cells in vitro. Findings were validated in archived human tissue samples of NEC. NEC was recorded in seven premature baboons. Consistent with existing human data, premature baboon intestine expressed less TGF-β(2) than term intestine. TGF-β(2) expression was regulated in epithelial cells in an autocrine fashion, which was interrupted in the premature intestine and during NEC due to increased expression of Smad7. LPS increased Smad7 binding to the TGF-β(2) promoter and was associated with dimethylation of the lysine H3K9, a marker of transcriptional silencing, on the nucleosome of TGF-β(2). Increased Smad7 expression in preterm intestine was correlated with the deficiency of SnoN/SKIL, a repressor of the Smad7 promoter. Smad7 inhibits autocrine expression of TGF-β(2) in intestinal epithelial cells in the normal premature intestine and during NEC. Increased Smad7 expression in the developing intestine may be due to a developmental deficiency of the SnoN/SKIL oncoprotein.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Amniotic fluid-borne hepatocyte growth factor protects rat pups against experimental necrotizing enterocolitis

Sunil K. Jain; Eric W. Baggerman; Krishnan MohanKumar; Kopperuncholan Namachivayam; Ramasamy Jagadeeswaran; Victor E. Reyes

Fetal swallowing of amniotic fluid, which contains numerous cytokines and growth factors, plays a key role in gut mucosal development. Preterm birth interrupts this exposure to amniotic fluid-borne growth factors, possibly contributing to the increased risk of necrotizing enterocolitis (NEC) in premature infants. We hypothesized that supplementation of formula feeds with amniotic fluid can provide amniotic fluid-borne growth factors and prevent experimental NEC in rat pups. We compared NEC-like injury in rat pups fed with infant formula vs. formula supplemented either with 30% amniotic fluid or recombinant hepatocyte growth factor (HGF). Cytokines/growth factors in amniotic fluid were measured by immunoassays. Amniotic fluid and HGF effects on enterocyte migration, proliferation, and survival were measured in cultured IEC6 intestinal epithelial cells. Finally, we used an antibody array to investigate receptor tyrosine kinase (RTK) activation and immunoblots to measure phosphoinositide 3-kinase (PI3K) signaling. Amniotic fluid supplementation in oral feeds protected rat pups against NEC-like injury. HGF was the most abundant growth factor in rat amniotic fluid in our panel of analytes. Amniotic fluid increased cell migration, proliferation, and cell survival in vitro. These effects were reproduced by HGF and blocked by anti-HGF antibody or a PI3K inhibitor. HGF transactivated several RTKs in IEC6 cells, indicating that its effects extended to multiple signaling pathways. Finally, similar to amniotic fluid, recombinant HGF also reduced the frequency and severity of NEC-like injury in rat pups. Amniotic fluid supplementation protects rat pups against experimental NEC, which is mediated, at least in part, by HGF.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase

Kopperuncholan Namachivayam; Cynthia L. Blanco; Brandy L. Frost; Aaron A. Reeves; Ramasamy Jagadeeswaran; Krishnan MohanKumar; Azif Safarulla; Partha Mandal; Steven A. Garzon; J. Usha Raj

Human milk contains substantial amounts of transforming growth factor (TGF)-β, particularly the isoform TGF-β2. We previously showed in preclinical models that enterally administered TGF-β2 can protect against necrotizing enterocolitis (NEC), an inflammatory bowel necrosis of premature infants. In this study we hypothesized that premature infants remain at higher risk of NEC than full-term infants, even when they receive their own mothers milk, because preterm human milk contains less bioactive TGF-β than full-term milk. Our objective was to compare TGF-β bioactivity in preterm vs. full-term milk and identify factors that activate milk-borne TGF-β. Mothers who delivered between 23 0/7 and 31 6/7 wk or at ≥37 wk of gestation provided milk samples at serial time points. TGF-β bioactivity and NF-κB signaling were measured using specific reporter cells and in murine intestinal tissue explants. TGF-β1, TGF-β2, TGF-β3, and various TGF-β activators were measured by real-time PCR, enzyme immunoassays, or established enzymatic activity assays. Preterm human milk showed minimal TGF-β bioactivity in the native state but contained a large pool of latent TGF-β. TGF-β2 was the predominant isoform of TGF-β in preterm milk. Using a combination of several in vitro and ex vivo models, we show that neuraminidase is a key regulator of TGF-β bioactivity in human milk. Finally, we show that addition of bacterial neuraminidase to preterm human milk increased TGF-β bioactivity. Preterm milk contains large quantities of TGF-β, but most of it is in an inactive state. Addition of neuraminidase can increase TGF-β bioactivity in preterm milk and enhance its anti-inflammatory effects.


Pediatric Research | 2016

Smad7 interrupts TGF-β signaling in intestinal macrophages and promotes inflammatory activation of these cells during necrotizing enterocolitis

Krishnan MohanKumar; Kopperuncholan Namachivayam; Kalyan C. Chapalamadugu; Steven A. Garzon; Muralidhar H. Premkumar; Srinivas M. Tipparaju

Background:Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants. Based on our recent findings of increased Smad7 expression in surgically resected bowel affected by NEC, we hypothesized that NEC macrophages undergo inflammatory activation because increased Smad7 expression renders these cells resistant to normal, gut-specific, transforming growth factor (TGF)-β-mediated suppression of inflammatory pathways.Methods:We used surgically resected human NEC tissue, murine models of NEC-like injury, bone marrow-derived and intestinal macrophages, and RAW264.7 cells. Smad7 and IκB kinase-beta (IKK-β) were measured by quantitative PCR, western blots, and immunohistochemistry. Promoter activation was confirmed in luciferase reporter and chromatin immunoprecipitation assays.Results:NEC macrophages showed increased Smad7 expression, particularly in areas with severe tissue damage and high bacterial load. Lipopolysaccharide-induced Smad7 expression suppressed TGF-β signaling and augmented nuclear factor-kappa B (NF-κB) activation and cytokine production in macrophages. Smad7-mediated NF-κB activation was likely mediated via increased expression of IKK-β, which, further increased Smad7 expression in a feed-forward loop. We show that Smad7 induced IKK-β expression through direct binding to the IKK-β promoter and its transcriptional activation.Conclusion:Smad7 expression in NEC macrophages interrupts TGF-β signaling and promotes NF-κB-mediated inflammatory signaling in these cells through increased expression of IKK-β.


Laboratory Investigation | 2014

Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet

Krishnan MohanKumar; Cheryl R. Killingsworth; R. Britt McILwain; Joseph G. Timpa; Ramasamy Jagadeeswaran; Kopperuncholan Namachivayam; Ashish Kurundkar; David R. Kelly; Steven A. Garzon

Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.


PLOS ONE | 2015

All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2.

Kopperuncholan Namachivayam; Krishnan MohanKumar; Dima Arbach; Ramasamy Jagadeeswaran; Sunil K. Jain; Viswanathan Natarajan; Dolly Mehta; Robert P. Jankov

Objective We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks’ gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms. Methods AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors. Results AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation. Conclusions AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation.


Pediatric Research | 2017

Trinitrobenzene sulfonic acid-induced intestinal injury in neonatal mice activates transcriptional networks similar to those seen in human necrotizing enterocolitis

Krishnan MohanKumar; Kopperuncholan Namachivayam; Feng Cheng; Rays H.Y. Jiang; Jaime Flores-Torres; Benjamin A. Torres

Background:We have shown previously that enteral administration of 2, 4, 6-trinitrobenzene sulfonic acid in 10-d-old C57BL/6 pups produces an acute necrotizing enterocolitis with histopathological and inflammatory changes similar to human necrotizing enterocolitis (NEC). To determine whether murine neonatal 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-mediated intestinal injury could be used as a NEC model, we compared gene expression profiles of TNBS-mediated intestinal injury and NEC.Methods:Whole-genome microarray analysis was performed on proximal colon from control and TNBS-treated pups (n = 8/group). For comparison, we downloaded human microarray data of NEC (n = 5) and surgical control (n = 4) from a public database. Data were analyzed using the software programs Partek Genomics Suite and Ingenuity Pathway Analysis.Results:We detected extensive changes in gene expression in murine TNBS-mediated intestinal injury and human NEC. Using fold-change cut-offs of ±1.5, we identified 4,440 differentially-expressed genes (DEGs) in murine TNBS-mediated injury and 1,377 in NEC. Murine TNBS-mediated injury and NEC produced similar changes in expression of orthologous genes (r = 0.611, P < 0.001), and also activated nearly-identical biological processes and pathways. Lipopolysaccharide was top predicted upstream regulator in both the murine and human datasets.Conclusion:Murine neonatal TNBS-mediated enterocolitis and human NEC activate nearly-identical biological processes, signaling pathways, and transcriptional networks.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans

Kopperuncholan Namachivayam; Hayley Coffing; Nehru Viji Sankaranarayanan; Yingzi Jin; Krishnan MohanKumar; Brandy L. Frost; Cynthia L. Blanco; Aloka L. Patel; Paula P. Meier; Steven A. Garzon; Umesh R. Desai

Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.

Collaboration


Dive into the Krishnan MohanKumar's collaboration.

Top Co-Authors

Avatar

Kopperuncholan Namachivayam

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Steven A. Garzon

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ramasamy Jagadeeswaran

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Cynthia L. Blanco

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Ashish Kurundkar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Torres

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil K. Jain

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Aloka L. Patel

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hayley Coffing

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge