Krishnendu Manna
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krishnendu Manna.
Journal of Nutritional Biochemistry | 2013
Sudeshna Mukherjee; Sayan Ghosh; Sreetama Choudhury; Arghya Adhikary; Krishnendu Manna; Sanjit Dey; Gaurisankar Sa; Tanya Das; S. Chattopadhyay
The clinical efficacy of the widely used chemotherapeutic drug methotrexate (MTX) is limited due to its associated hepatotoxicity. Pomegranate polyphenols are of huge health benefits and known to possess remarkable antioxidant properties capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. In this study, we explored the protective role of pomegranate fruit extract (PFE) in ameliorating MTX-induced hepatic damage. Male Swiss albino mice exposed to MTX (20 mg/kg body weight) exhibited distinct markers of toxicity such as increased activities of enzymes alanine transaminase, aspartate transaminase, lactate dehydrogenase and alkaline phosphatase and also increased oxidative stress in liver evidenced by increased ROS generation and lipid peroxidation. Decrease in reduced glutathione levels, superoxide dismutase, catalase, hepatic heme oxygenase 1 and NQO-1 activities were also observed. Tracing the signal transduction pathways, it was seen that MTX exposure significantly increased nuclear translocation of NF-κB coupled with increase in phosphorylated Iκ-B and down-regulation of NF-kappaB-dependent antiapoptotic protein Bcl-2. Treatment with MTX increased the expression of the apoptotic enhancer Rho/Cdc42 as well as the phosphorylation of SAPK/JNK. A shift in the Bax/Bcl-2 ratio towards apoptosis and increase in the caspase 3 level was also evident. Administration of PFE for 7 consecutive days before and after MTX challenge suppressed MTX-induced cell death, mitigated the injurious effects of MTX and offered protection against apoptosis. PFE was shown to reduce ROS generation in hepatocytes by activating the Nrf2-ARE pathway and inhibiting NF-κB as a consequence of which the antioxidant defense mechanism in the liver was up-regulated, thereby conferring protection against MTX-induced hepatotoxicity and apoptosis.
Life Sciences | 2013
Swaraj Bandhu Kesh; Kunal Sikder; Krishnendu Manna; Dipesh Kr. Das; Amitava Khan; Nilanjan Das; Sanjit Dey
AIMS The present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation. MAIN METHODS Male Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10mg/kg) or F (100mg/kg) and both (10 and 100mg/kg) for 8weeks. The control mice (C) were fed with normal diet. KEY FINDINGS The H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed. SIGNIFICANCE Simultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS+F combination along with HFD has shown outstanding effects as compared to other treated groups.
PLOS ONE | 2014
Ujjal Das; Krishnendu Manna; Mahuya Sinha; Sanjukta Datta; Dipesh Kr. Das; Anindita Chakraborty; Mahua Ghosh; Krishna Das Saha; Sanjit Dey
Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation.
Free Radical Research | 2012
Mahuya Sinha; Dipesh Kr. Das; Krishnendu Manna; Sanjukta Datta; Tanusree Ray; Alok Kumar Sil; Sanjit Dey
Abstract The current study was intended to evaluate the hepatoprotective effect of Epicatechin (EC) against radiation-induced oxidative stress, in terms of inflammation and lipid peroxidation. Swiss albino mice were administered with EC (15 mg/kg body weight) for three consecutive days before exposing them to a single dose of 5-Gy 60Co gamma (γ) irradiation. Mice were necropsied and livers were taken for immunohistochemistry, western blot analysis and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were increased whereas the activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content and ferric reducing antioxidant power (FRAP) were diminished upon radiation exposure compared to control. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited whereas an increase in SOD, CAT, GSH and FRAP was observed in the mice treated with EC prior to irradiation. Thus, pre-treatment with EC offers protection against γ-radiation induced hepatic alterations.
Free Radical Research | 2015
Krishnendu Manna; Ujjal Das; Dipesh Kr. Das; Swaraj Bandhu Kesh; Amitava Khan; Anindita Chakraborty; Sanjit Dey
Abstract The adverse effects of ionizing radiation occur due to the generation of reactive oxygen species (ROS). The aim of this study was to identify the protective effects of naringin (NG), a citrus flavonoid, on ionizing radiation (IR)-induced differential stress response, with an exploration of the mechanisms involved in this process. Isolated murine splenocytes were incubated in the presence and in the absence of different concentrations of NG (50 and 100 μM) for 1 h prior to 6 Gy γ-irradiation, and the molecular mechanisms of action were determined through biochemical, immunoblot, flow cytometric, and immunofluorescence studies. Pretreatment with NG significantly prevented IR-induced intracellular ROS generation, thereby preventing the formation of cellular TBARS and the development of cellular nitrite. NG significantly reduced nuclear DNA damage with respect to the irradiated splenocytes, through the inhibition of DNA-PKcs and p-γH2AX. The reduced cell viability as a result of irradiation was recovered by NG through modulation of the redox-regulated cell signaling system. NG pretreatment resulted in significant inhibition of IR-induced G1/S phase cell cycle arrest through the modulation of p53-dependent p21/WAF1, cyclin E, and CDK2 activation. The results also demonstrated that NG blocked the IR-induced p38 function and reversed IR-mediated differential stress response through inhibition of the NF-κB pathway. Thus, the p38/NF-κB pathway participated in the IR-induced inflammatory development, leading to upregulation of CRP, MCP-1, and iNOS2 gene expression. However, NG pretreatment reversed the inflammatory development through downregulation of NF-κB, and regulated the expression of CRP, MCP-1, and iNOS2. The above results provide a theoretical basis for the preventive use of NG against radiation-induced multiple cellular anomalies.
International Journal of Radiation Biology | 2013
Dipesh Kr. Das; Anirban Chakraborty; Mahuya Sinha; Krishnendu Manna; Dipanwita Mukherjee; Anindita Chakraborty; Sekhar Bhattacharjee; Sanjit Dey
Abstract Purpose: The present work was intended to evaluate the radioprotective effect of quercetin against gamma radiation-induced oxidative stress on red blood cells (RBC). Materials and methods: Swiss albino male mice were treated with quercetin (100 mg/kg body wt) for three consecutive days prior to 5 Gy 60Co-gamma irradiation. RBC was isolated to estimate the level of intracellular reactive oxygen species (ROS), membrane lipid peroxidation (LPO), intracellular reduced glutathione (GSH), mean corpuscular hemoglobin concentration (MCHC), osmotic fragility and morphological alterations by atomic force microscope (AFM). Results: Irradiation increased intracellular ROS and membrane LPO whereas it decreased the intracellular GSH. Quercetin pretreatment ameliorated these alterations. The MCHC value decreased after irradiation whereas quercetin pretreatment restored it. The average osmotic fragility (H50) and the maximum rate of hemolysis (dH/dC)max increased after irradiation. Quercetin pretreatment decreased the H50 and (dH/dC)max. The AFM study showed that irradiation transformed RBC from biconcave to echinocytes, increased their surface roughness and decreased the vertical distance whereas pretreatment of quercetin significantly prevented both the alterations. Conclusions: Gamma radiation produced ROS and LPO which rendered oxidative stress and ultimately damaged RBC whereas quercetin ameliorated these changes and protected RBC from radiation-mediated damage.
International Journal of Radiation Biology | 2013
Amitava Khan; Krishnendu Manna; Chinchu Bose; Mahuya Sinha; Dipesh Kr. Das; Swaraj Bandhu Kesh; Anindita Chakrabarty; Sanjit Dey
Abstract Purpose: To evaluate the protective effect of gossypetin (GTIN) against gamma (γ)-radiation-mediated DNA damage. Materials and methods: Increasing concentrations (10–150 μM) of GTIN were incubated with supercoiled DNA 1 h prior exposure to γ-radiation in the range of 5-Gy absorbed dose from Co60 γ source. To establish the effective protective concentration of GTIN, supercoiled DNA was pre-incubated with 50 μM of GTIN for 1 h followed by exposure of 5, 10 and 20 Gy doses of γ-radiation. Moreover, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical, hydroxyl radical, nitric oxide (NO) scavenging, metal chelating activity and ferric reducing antioxidant power (FRAP) of GTIN were measured and compared with standards. The flowcytometric analysis and radiation-induced genomic DNA damage by comet assay were employed to estimate the level of intracellular reactive oxygen species (ROS) using isolated murine hepatocytes. Results: GTIN was able to effectively scavenge different free radicals in in vitro situations. It could significantly prevent radiation induced supercoiled and genomic DNA damage with reduced comet parameters. It also acted as a potent scavenger of the radiation induced ROS. Conclusions: GTIN ameliorated radiation-induced oxidative stress and DNA damage by its free-radical scavenging activity.
Journal of Coordination Chemistry | 2011
Pali Maiti; Amitava Khan; Tanmay Chattopadhyay; Sudhanshu Das; Krishnendu Manna; Dipayan Bose; Sanjit Dey; Ennio Zangrando; Debasis Das
Four water-soluble dinuclear Zn(II) complexes (1–4) of compartmental ligand L = 2,6-bis(R-iminomethyl)-4-R′-phenolate (where R = N-ethylpiperidine or R = N-ethylpyrrolidine, R′ = methyl or tert-butyl) have been synthesized, characterized, and their DNA cleavage activity and cytotoxicity toward HepG2 cancerous cells are evaluated. The dinuclear complexes are formed by a pentadentate-substituted phenolate ligand chelating the metal ions separated by ca 3.27 Å. Each metal is a distorted trigonal bipyramid, completing the coordination sphere through acetate. The X-ray structural determination of 2 shows that the complex is counterbalanced by half (formulation [Zn2L2(CH3CO2)2][(Zn(SCN)4]0.5), while in 1 and 3 two crystallographically-independent complexes are present in the unit cell with a . Among the four complexes only the 4-tert-butyl-phenolato derivatives (3 and 4) show DNA cleavage activity in in-vivo conditions and appear to be promising toward metal complexes to be used as anticancer agents. The cytotoxicity of the complexes, investigated through MTT assay, suggests that 4 is a better choice as artificial nuclease.
RSC Advances | 2016
Krishnendu Manna; Amitava Khan; Sushobhan Biswas; Ujjal Das; Aaveri Sengupta; Dipanwita Mukherjee; Anindita Chakraborty; Sanjit Dey
Understanding the mechanism of ionizing radiation (IR)-induced systemic stress and its modulation by phytocomponents has great significance for the development of novel phyto-radioprotectors. The present study was intended to evaluate the radioprotective effect of naringin (NG), a citrus flavonoid on the modulation of IR-induced activation of the redox-regulated signaling system in murine liver. On the basis of survival analysis, mice were treated with 75 mg kg−1 body weight of NG for three consecutive days before irradiation (6 Gy). Pretreatment with NG significantly prevented the IR-induced generation of intracellular reactive oxygen species (ROS), along with the formation of hepatic thiobarbituric acid reactive substances (TBARS) and cellular nitrite. NG also showed significant reduction in IR-induced nuclear DNA damage through the inhibition of DNA-dependent protein kinase (DNA-PK). Further, the IR-induced cell death was arrested in the presence of NG through the inhibition of p53 mediated stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) pathways and modulation of other molecules of apoptosis pathways. Moreover, NG supported the intracellular defense mechanisms, by maintaining the endogenous antioxidants probably through phosphoinositide 3-kinase/protein kinase-B (PI3K/Akt) guided transcriptional activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In addition, NG inhibited IR-induced inflammation through suppression of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) followed by the alteration of pro inflammatory factors. Taken together, these results suggested that NG reversed the IR-induced redox-imbalance in murine liver, probably by the inhibition of ROS/p38-MAPK/NF-κB, along with the activation of the PI3K/Akt/Nrf2 pathway and the reduction of apoptosis by interfering with the p53/SAPK/JNK/Bax pathway.
International Journal of Radiation Biology | 2016
Ujjal Das; Sushobhan Biswas; Aaveri Sengupta; Krishnendu Manna; Anindita Chakraborty; Sanjit Dey
Abstract Purpose: The spleen is a crucial organ manifesting immune functions. Thus, radiation-induced oxidative challenge is vulnerable for the spleen. Our major objective was to protect the spleen from radiation-induced anomalous situations and to identify the signaling pathways involved. Materials and methods: Swiss albino mice were treated with ferulic acid (FA) once in a day at a dose of 50 mg/kg body weight for 5 consecutive days before exposing them to single dose of 10 Gy irradiation. The ROS generation and MMP change were determined by flow cytometry. The expression of different signaling proteins was investigated by immunoblotting and immunocytochemistry. Results: FA pretreatment significantly prevented radiation-induced oxidative stress by downregulating TBARS formation and by upregulating SOD and catalase activity. FA scavenged ROS, prevented the alteration of MMP and downregulated the expression of stress marker Cdc42 and apoptotic markers p53, p21, Bax and PTEN. Cell cycle analysis showed DNA damage induced arrest of cells at subG0/G1 phase. Moreover, pretreatment with FA augmented Bcl2 expression and also increased the level of p-PI3K. Conclusion: FA prevented the activation of apoptotic signaling events in the spleen by interfering with the free radical chain reaction and by scavenging superfluous ROS. This is perhaps the first comprehensive study with a mechanistic viewpoint that FA can protect the spleen from ionizing radiation.