Krisna Prak
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krisna Prak.
Biochimica et Biophysica Acta | 2010
Mary Rose Tandang-Silvas; Takako Fukuda; Chisato Fukuda; Krisna Prak; Cerrone Cabanos; Aiko Kimura; Takafumi Itoh; Bunzo Mikami; Shigeru Utsumi; Nobuyuki Maruyama
The crystal structures of two pro-11S globulins namely: rapeseed procruciferin and pea prolegumin are presented here. We have extensively compared them with the other known structures of plant seed 11S and 7S globulins. In general, the disordered regions in the crystal structures among the 11S globulins correspond to their five variable regions. Variable region III of procruciferin is relatively short and is in a loop conformation. This region is highly disordered in other pro-11S globulin crystals. Local helical and strand variations also occur across the group despite general structure conservation. We showed how these variations may alter specific physicochemical, functional and physiological properties. Aliphatic hydrophobic residues on the molecular surface correlate well with Tm values of the globulins. We also considered other structural features that were reported to influence thermal stability but no definite conclusion was drawn since each factor has additive or subtractive effect. Comparison between proA3B4 and mature A3B4 revealed an increase in r.m.s.d. values near variable regions II and IV. Both regions are on the IE face. Secondary structure based alignment of 11S and 7S globulins revealed 16 identical residues. Based on proA3B4 sequence, Pro60, Gly128, Phe163, Phe208, Leu213, Leu227, Ile237, Pro382, Val404, Pro425 and Val 466 are involved in trimer formation and stabilization. Gly28, Gly74, Asp135, Gly349 and Gly397 are involved in correct globular folding.
Peptides | 2006
Krisna Prak; Yukie Maruyama; Nobuyuki Maruyama; Shigeru Utsumi
The peptide IIAEK derived from beta-lactoglobulin has a hypocholesterolemic activity greater than that of beta-sitosterol. To create food proteins with multiple copies of this valuable peptide sequence, we introduced tandem multimers of the nucleotide sequence encoding the peptide into DNA regions corresponding to the five variable regions of soybean glycinin A1aB1b subunit, and expressed the mutants in Escherichia coli. The expression level and solubility of the five mutants, each containing four IIAEK sequences in each of the variable regions, were compared. Overall, the expression level and solubility of the mutants with four IIAEK sequences in the variable regions IV and V were the best followed by II > III > I. Further, introduction of the fifth IIAEK sequence to the variable region IV did not decrease expression level and solubility. Increasing the number of IIAEK to 7 and 10 slightly decreased expression level, while their solubility decreased to as low as 40 and 1%, respectively. Various mutations were combined to get a mutant containing as many IIAEK sequences as possible. Some of the resulting mutants were expressed in the soluble form. The mutant containing eight IIAEK from the combination of variable regions IV and V (IV-4 + V-4) showed the best balance of the expression level and solubility, followed by the combination of variable regions II and III (II-4 + III-4). The soluble fractions of these mutants were purified by hydrophobic, gel filtration and ion-exchange column chromatography. Yields of IIAEK peptide released by in vitro digestion with trypsin from both mutants were around 80%. This is the first report that a large amount of a physiologically active peptide could be introduced into food protein.
Nature Communications | 2017
N. Pengo; A. Agrotis; Krisna Prak; J. Jones; Robin Ketteler
Upon induction of autophagy, the ubiquitin-like protein LC3 is conjugated to phosphatidylethanolamine (PE) on the inner and outer membrane of autophagosomes to allow cargo selection and autophagosome formation. LC3 undergoes two processing steps, the proteolytic cleavage of pro-LC3 and the de-lipidation of LC3-PE from autophagosomes, both executed by the same cysteine protease ATG4. How ATG4 activity is regulated to co-ordinate these events is currently unknown. Here we find that ULK1, a protein kinase activated at the autophagosome formation site, phosphorylates human ATG4B on serine 316. Phosphorylation at this residue results in inhibition of its catalytic activity in vitro and in vivo. On the other hand, phosphatase PP2A-PP2R3B can remove this inhibitory phosphorylation. We propose that the opposing activities of ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation provide a phospho-switch that regulates the cellular activity of ATG4B to control LC3 processing.Upon autophagy induction, LC3 is cleaved by the protease ATG4 and conjugated to the autophagosomal membrane; however, its removal is mediated by the same protease. Here the authors show that ULK1-mediated phosphorylation and PP2A-mediated dephosphorylation of ATG4 regulates its cellular activity to control LC3 processing.
Bioscience, Biotechnology, and Biochemistry | 2010
Andrei D. Shutov; Krisna Prak; Takako Fukuda; Sergei V. Rudakov; Angela Rudakova; Mary Rose Tandang-Silvas; Keigo Fujiwara; Bunzo Mikami; Shigeru Utsumi; Nobuyuki Maruyama
Basic 7S globulin, a cysteine-rich protein from soybean seeds, consists of subunits containing 27 kD and 16 kD chains linked by disulfide bonding. Three differently sized subunits of the basic 7S globulin were detected and partially separated by SP Sepharose chromatography. The basic 7S globulin was characterized as a member of a superfamily of structurally related but functionally distinct proteins descended from a specific group of plant aspartic proteinases.
Bioscience, Biotechnology, and Biochemistry | 2009
Takashi Mori; Yohei Saruta; Takako Fukuda; Krisna Prak; Masao Ishimoto; Nobuyuki Maruyama; Shigeru Utsumi
Plant seed cells amass storage proteins that are synthesized on the endoplasmic reticulumn (ER) and then transported to protein storage vacuoles (PSVs). Many dicotyledonous seeds contain 11S globulin (11S) as a major storage protein. We investigated the accumulation behaviors of pea and pumpkin 11S during seed maturation and compared them with soybean 11S biogenesis (Mori et al., 2004). The accumulation of pea 11S in seeds was very similar to that of soybean 11S at all the development stages we examined, whereas pumpkin 11S condensed in the ER. The determinant of accumulation behavior might be the surface hydrophobicity of 11S. Further, we examined the accumulation of 11Ss in tobacco BY-2 cells to analyze behavior in the same environment. 11Ss expressed in BY2 cells were all observed in precursor form (pro11S). Pro11S with high surface hydrophobicity might be transported to vacuoles in a multivesicular body-mediated pathway when the expression level remains low.
Biochemistry | 2016
Krisna Prak; Janos Kriston-Vizi; A. W. Edith Chan; Christin Luft; Joana R. Costa; Niccolo Pengo; Robin Ketteler
Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification of potent CLK2 inhibitors and identified compounds with a novel chemical scaffold structure, the benzobisthiazoles, that has not been previously reported for kinase inhibitors. We propose models for binding of these compounds to CLK family proteins and key residues in CLK2 that are important for the compound interactions and the kinase activity. We identified structural elements within the benzobisthiazole that determine CLK2 and CLK3 inhibition, thus providing a rationale for selectivity assays. In summary, our results will inform structure-based design of CLK family inhibitors based on the novel benzobisthiazole scaffold.
Oncotarget | 2016
Joana R. Costa; Krisna Prak; Sarah Aldous; Christina Gewinner; Robin Ketteler
The cellular stress response autophagy has been implicated in various diseases including neuro-degeneration and cancer. The role of autophagy in cancer is not clearly understood and both tumour promoting and tumour suppressive effects of autophagy have been reported, which complicates the design of therapeutic strategies based on targeting the autophagy pathway. Here, we have systematically analyzed gene expression data for 47 autophagy genes for deletions, amplifications and mutations in various cancers. We found that several cancer types have frequent autophagy gene amplifications, whereas deletions are more frequent in prostate adenocarcinomas. Other cancer types such as glioblastoma and thyroid carcinoma show very few alterations in any of the 47 autophagy genes. Overall, individual autophagy core genes are altered at low frequency in cancer, suggesting that cancer cells require functional autophagy. Some autophagy genes show frequent single base mutations, such as members of the ULK family of protein kinases. Furthermore, we found hotspot mutations in the arginine-rich stretch in MAP1LC3A resulting in reduced cleavage of MAP1LC3A by ATG4B both in vitro and in vivo, suggesting a functional implication of this gene mutation in cancer development.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013
Krisna Prak; Bunzo Mikami; Takafumi Itoh; Takako Fukuda; Nobuyuki Maruyama; Shigeru Utsumi
Soybean mature glycinin was purified and crystallized and its preliminary crystallographic analysis is also reported.
Journal of Agricultural and Food Chemistry | 2005
Krisna Prak; Kazuyo Nakatani; Tomoyuki Katsube-Tanaka; Motoyasu Adachi; Nobuyuki Maruyama; Shigeru Utsumi
Journal of Agricultural and Food Chemistry | 2004
Nobuyuki Maruyama; Krisna Prak; Shiori Motoyama; Seon-Kang Choi; Kazuhiro Yagasaki; Masao Ishimoto; Shigeru Utsumi