Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krista M. Hennig is active.

Publication


Featured researches published by Krista M. Hennig.


Neuropsychopharmacology | 2010

Inhibitors of Class 1 Histone Deacetylases Reverse Contextual Memory Deficits in a Mouse Model of Alzheimer's Disease

Mark R. Kilgore; Courtney A. Miller; Daniel M. Fass; Krista M. Hennig; Stephen J. Haggarty; J. David Sweatt; Gavin Rumbaugh

Alzheimers disease (AD) is a neurodegenerative disorder characterized clinically by cognitive impairments that progress to dementia and death. The earliest symptoms of AD present as a relatively pure deficit in memory retrieval. Therefore, drug treatments that intervene in the early stages of AD by rescuing memory deficits could be promising therapies to slow, or even reverse progression of the disease. In this study, we tested the potential of systemic histone deacetylase inhibitor (HDACi) treatment to rescue cognitive deficits in a mouse model of AD. APPswe/PS1dE9 mice showed pronounced contextual memory impairments beginning at 6 months of age. Chronic HDACi injections (2–3 weeks) did not alter contextual memory formation in normal mice, but had profound effects in transgenic animals. Injections of sodium valproate, sodium butyrate, or vorinostat (suberoylanilide hydroxamic acid; Zolinza®) completely restored contextual memory in these mutant mice. Further behavioral testing of the HDACi-treated transgenic mice showed that the newly consolidated memories were stably maintained over a 2-week period. Measurement of the HDAC isoform selectivity profile of sodium valproate, sodium butyrate, and vorinostat revealed the common inhibition of class I HDACs (HDAC1, 2, 3, 8) with little effect on the class IIa HDAC family members (HDAC4, 5, 7, 9) and inhibition of HDAC6 only by vorinostat. These preclinical results indicate that targeted inhibition of class I HDAC isoforms is a promising avenue for treating the cognitive deficits associated with early stage AD.


Nature | 2012

An epigenetic blockade of cognitive functions in the neurodegenerating brain

Johannes Gräff; Damien Rei; Ji-Song Guan; Wenyuan Wang; Jinsoo Seo; Krista M. Hennig; Thomas J.F. Nieland; Daniel M. Fass; Patricia F. Kao; Martin Kahn; Susan C. Su; Alireza Samiei; Nadine F. Joseph; Stephen J. Haggarty; Ivana Delalle; Li-Huei Tsai

Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.


PLOS ONE | 2013

A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

Frederick A. Schroeder; Michael C. Lewis; Daniel M. Fass; Florence F. Wagner; Yan-Ling Zhang; Krista M. Hennig; Jennifer Gale; Wen-Ning Zhao; Surya A. Reis; Douglas Barker; Erin Berry-Scott; Sung Won Kim; Elizabeth L. Clore; Jacob M. Hooker; Edward B. Holson; Stephen J. Haggarty; Tracey L. Petryshen

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Epigenetics | 2013

Class I HDAC imaging using [3H]CI-994 autoradiography

Yajie Wang; Yan-Ling Zhang; Krista M. Hennig; Jennifer Gale; Yijia Hong; Anna Cha; Misha M. Riley; Florence F. Wagner; Stephen J. Haggarty; Edward B. Holson; Jacob M. Hooker

[3H]CI-994, a radioactive isotopologue of the benzamide CI-994, a class I histone deacetylase inhibitor (HDACi), was evaluated as an autoradiography probe for ex vivo labeling and localizing of class I HDAC (isoforms 1–3) in the rodent brain. After protocol optimization, up to 80% of total binding was attributed to specific binding. Notably, like other benzamide HDACi, [3H]CI-994 exhibits slow binding kinetics when measured in vitro with isolated enzymes and ex vivo when used for autoradiographic mapping of HDAC1–3 density. The regional distribution and density of HDAC1–3 was determined through a series of saturation and kinetics experiments. The binding properties of [3H]CI-994 to HDAC1–3 were characterized and the data were used to determine the regional Bmax of the target proteins. Kd values, determined from slice autoradiography, were between 9.17 and 15.6 nM. The HDAC1–3 density (Bmax), averaged over whole brain sections, was of 12.9 picomol · mg−1 protein. The highest HDAC1–3 density was found in the cerebellum, followed by hippocampus and cortex. Moderate to low receptor density was found in striatum, hypothalamus and thalamus. These data were correlated with semi-quantitative measures of each HDAC isoform using western blot analysis and it was determined that autoradiographic images most likely represent the sum of HDAC1, HDAC2, and HDAC3 protein density. In competition experiments, [3H]CI-994 binding can be dose-dependently blocked with other HDAC inhibitors, including suberoylanilide hydroxamic acid (SAHA). In summary, we have developed the first known autoradiography tool for imaging class I HDAC enzymes. Although validated in the CNS, [3H]CI-994 will be applicable and beneficial to other target tissues and can be used to evaluate HDAC inhibition in tissues for novel therapies being developed. [3H]CI-994 is now an enabling imaging tool to study the relationship between diseases and epigenetic regulation.


Bioorganic & Medicinal Chemistry | 2016

Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors.

Florence F. Wagner; Michel Weiwer; Stefan Steinbacher; Adrian Schomburg; Peter Reinemer; Jennifer Gale; Arthur J. Campbell; Stewart L. Fisher; Wen-Ning Zhao; Surya A. Reis; Krista M. Hennig; Méryl Thomas; Peter Müller; Martin R. Jefson; Daniel M. Fass; Stephen J. Haggarty; Yan-Ling Zhang; Edward B. Holson

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.


Chemistry & Biology | 2017

Selectivity and Kinetic Requirements of HDAC Inhibitors as Progranulin Enhancers for Treating Frontotemporal Dementia

Angela She; Iren Kurtser; Surya A. Reis; Krista M. Hennig; Jenny Lai; Audrey Lang; Wen Ning Zhao; Ralph Mazitschek; Bradford C. Dickerson; Joachim Herz; Stephen J. Haggarty

Frontotemporal dementia (FTD) arises from neurodegeneration in the frontal, insular, and anterior temporal lobes. Autosomal dominant causes of FTD include heterozygous mutations in the GRN gene causing haploinsufficiency of progranulin (PGRN) protein. Recently, histone deacetylase (HDAC) inhibitors have been identified as enhancers of PGRN expression, although the mechanisms through which GRN is epigenetically regulated remain poorly understood. Using a chemogenomic toolkit, including optoepigenetic probes, we show that inhibition of class I HDACs is sufficient to upregulate PGRN in human neurons, and only inhibitors with apparent fast binding to their target HDAC complexes are capable of enhancing PGRN expression. Moreover, we identify regions in the GRN promoter in which elevated H3K27 acetylation and transcription factor EB (TFEB) occupancy correlate with HDAC-inhibitor-mediated upregulation of PGRN. These findings have implications for epigenetic and cis-regulatory mechanisms controlling human GRN expression and may advance translational efforts to develop targeted therapeutics for treating PGRN-deficient FTD.


Molecular Neuropsychiatry | 2017

WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4

Krista M. Hennig; Daniel M. Fass; Wen-Ning Zhao; Steven D. Sheridan; Ting Fu; Serkan Erdin; Alexei Stortchevoi; Diane Lucente; Jannine D. Cody; David Sweetser; James F. Gusella; Michael E. Talkowski; Stephen J. Haggarty

Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.


ACS Medicinal Chemistry Letters | 2011

Short-Chain HDAC Inhibitors Differentially Affect Vertebrate Development and Neuronal Chromatin

Daniel M. Fass; Rishita Shah; Balaram Ghosh; Krista M. Hennig; Stephanie Norton; Wen-Ning Zhao; Surya A. Reis; Peter S. Klein; Ralph Mazitschek; Rebecca L. Maglathlin; Tim Lewis; Stephen J. Haggarty


Neuropharmacology | 2013

Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity.

Daniel M. Fass; Surya A. Reis; Balaram Ghosh; Krista M. Hennig; Nadine F. Joseph; Wen-Ning Zhao; Thomas J.F. Nieland; Ji-Song Guan; Chelsea E. Groves Kuhnle; Weiping Tang; Douglas Barker; Ralph Mazitschek; Stuart L. Schreiber; Li-Huei Tsai; Stephen J. Haggarty


Chemical Science | 2015

Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers

Florence F. Wagner; Yan-Ling Zhang; Daniel M. Fass; N. Joseph; Jennifer Gale; Michel Weiwer; P. McCarren; Stewart L. Fisher; T. Kaya; Wen-Ning Zhao; Surya A. Reis; Krista M. Hennig; Méryl Thomas; B. C. Lemercier; Michael C. Lewis; J. S. Guan; M. P. Moyer; Edward M. Scolnick; Stephen J. Haggarty; Li-Huei Tsai; Edward B. Holson

Collaboration


Dive into the Krista M. Hennig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge