Krista M. Rodgers
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Krista M. Rodgers.
Brain | 2009
Krista M. Rodgers; Mark R. Hutchinson; Alexis Northcutt; Steven F. Maier; Linda R. Watkins; Daniel S. Barth
Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.
Cerebral Cortex | 2008
Krista M. Rodgers; Alexander M. Benison; Andrea Klein; Daniel S. Barth
Compared with other areas of the forebrain, the function of insular cortex is poorly understood. This study examined the unisensory and multisensory function of the rat insula using high-resolution, whole-hemisphere, epipial evoked potential mapping. We found the posterior insula to contain distinct auditory and somatotopically organized somatosensory fields with an interposed and overlapping region capable of integrating these sensory modalities. Unisensory and multisensory responses were uninfluenced by complete lesioning of primary and secondary auditory and somatosensory cortices, suggesting a high degree of parallel afferent input from the thalamus. In light of the established connections of the posterior insula with the amygdala, we propose that integration of auditory and somatosensory modalities reported here may play a role in auditory fear conditioning.
Neuroscience | 2014
Peter M. Grace; Khara M. Ramos; Krista M. Rodgers; Xiaohui Wang; Mark R. Hutchinson; Makenzie T. Lewis; Kelly N. Morgan; Juliet L. Kroll; Frederick R. Taylor; Keith A. Strand; Yingning Zhang; Debra Berkelhammer; Madeline G. Huey; Lisa I. Greene; Thomas A. Cochran; Hang Yin; Daniel S. Barth; Kirk W. Johnson; Kenner C. Rice; Steven F. Maier; Linda R. Watkins
CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.
The Journal of Neuroscience | 2015
Krista M. Rodgers; F. Edward Dudek; Daniel S. Barth
Variable-duration oscillations and repetitive, high-voltage spikes have been recorded in the electrocorticogram (ECoG) of rats weeks and months after fluid percussion injury (FPI), a model of traumatic brain injury. These ECoG events, which have many similarities to spike-wave-discharges (SWDs) and absence seizures, have been proposed to represent nonconvulsive seizures characteristic of post-traumatic epilepsy (PTE). The present study quantified features of SWD episodes in rats at different time points after moderate to severe FPI, and compared them with age-matched control rats. Control and FPI-injured rats at 1 year of age displayed large-amplitude and frequent SWD events at frontal and parietal recording sites. At 3–6 months, SWDs were shorter in duration and less frequent; extremely brief SWDs (i.e., “larval”) were detected as early as 1 month. The onset of the SWDs was nearly always synchronous across electrodes and of larger amplitude in frontal regions. A sensory stimulus, such as a click, immediately and consistently stopped the occurrence of the SWDs. SWDs were consistently accompanied by behavioral arrest. All features of SWDs in control and experimental (FPI) rats were indistinguishable. None of the FPI-treated rats developed nonconvulsive or convulsive seizures that could be distinguished electrographically or behaviorally from SWDs. Because SWDs have features similar to genetic absence seizures, these results challenge the hypothesis that SWDs after FPI reflect PTE.
Journal of Neurotrauma | 2012
Krista M. Rodgers; Florencia M. Bercum; Danielle L. McCallum; Jerry W. Rudy; Lauren C. Frey; Kirk W. Johnson; Linda R. Watkins; Daniel S. Barth
Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brains immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans.
Journal of Neurotrauma | 2014
Krista M. Rodgers; Yuetiva K. Deming; Florencia M. Bercum; Serhiy Y. Chumachenko; Julie Wieseler; Kirk W. Johnson; Linda R. Watkins; Daniel S. Barth
Abstract Traumatic brain injury (TBI) increases the risk of neuropsychiatric disorders, particularly anxiety disorders. Yet, there are presently no therapeutic interventions to prevent the development of post-traumatic anxiety or effective treatments once it has developed. This is because, in large part, of a lack of understanding of the underlying pathophysiology. Recent research suggests that chronic neuroinflammatory responses to injury may play a role in the development of post-traumatic anxiety in rodent models. Acute peri-injury administration of immunosuppressive compounds, such as Ibudilast (MN166), have been shown to prevent reactive gliosis associated with immune responses to injury and also prevent lateral fluid percussion injury (LFPI)-induced anxiety-like behavior in rats. There is evidence in both human and rodent studies that post-traumatic anxiety, once developed, is a chronic, persistent, and drug-refractory condition. In the present study, we sought to determine whether neuroinflammation is associated with the long-term maintenance of post-traumatic anxiety. We examined the efficacy of an anti-inflammatory treatment in decreasing anxiety-like behavior and reactive gliosis when introduced at 1 month after injury. Delayed treatment substantially reduced established LFPI-induced freezing behavior and reactive gliosis in brain regions associated with anxiety and continued neuroprotective effects were evidenced 6 months post-treatment. These results support the conclusion that neuroinflammation may be involved in the development and maintenance of anxiety-like behaviors after TBI.
The Journal of Neuroscience | 2015
Florencia M. Bercum; Krista M. Rodgers; Alex M. Benison; Zachariah Z. Smith; Jeremy Taylor; Elise Kornreich; Heidi L. Grabenstatter; F. Edward Dudek; Daniel S. Barth
Human autism is comorbid with epilepsy, yet, little is known about the causes or risk factors leading to this combined neurological syndrome. Although genetic predisposition can play a substantial role, our objective was to investigate whether maternal environmental factors alone could be sufficient. We examined the independent and combined effects of maternal stress and terbutaline (used to arrest preterm labor), autism risk factors in humans, on measures of both autistic-like behavior and epilepsy in Sprague-Dawley rats. Pregnant dams were exposed to mild stress (foot shocks at 1 week intervals) throughout pregnancy. Pups were injected with terbutaline on postnatal days 2–5. Either maternal stress or terbutaline resulted in autistic-like behaviors in offspring (stereotyped/repetitive behaviors and deficits in social interaction or communication), but neither resulted in epilepsy. However, their combination resulted in severe behavioral symptoms, as well as spontaneous recurrent convulsive seizures in 45% and epileptiform spikes in 100%, of the rats. Hippocampal gliosis (GFAP reactivity) was correlated with both abnormal behavior and spontaneous seizures. We conclude that prenatal insults alone can cause comorbid autism and epilepsy but it requires a combination of teratogens to achieve this; testing single teratogens independently and not examining combinatorial effects may fail to reveal key risk factors in humans. Moreover, astrogliosis may be common to both teratogens. This new animal model of combined autism and epilepsy permits the experimental investigation of both the cellular mechanisms and potential intervention strategies for this debilitating comorbid syndrome. SIGNIFICANCE STATEMENT The comorbidity of human autism and epilepsy has been recognized for decades with little understanding of factors that increase risk. We show that two common human risk factors for autism (maternal stress and terbutaline), only when combined, result in severe ASD-like behavior and epilepsy. The significance of this work is fourfold: (1) combinations of teratogens are required to assess true risk in humans; (2) maternal stress and terbutaline, which are frequently combined in pregnant mothers, may be far more of a risk factor than previously appreciated; (3) astrogliosis may be a common mechanism for this syndrome; and (4) this first animal model of environmentally induced autism/epilepsy permits experimental investigation of cellular mechanisms and intervention strategies.
The Journal of Neuroscience | 2017
Jeremy Taylor; Krista M. Rodgers; Florencia M. Bercum; Carmen J. Booth; F. Edward Dudek; Daniel S. Barth
Genetically inherited absence epilepsy in humans is typically characterized by brief (seconds) spontaneous seizures, which involve spike–wave discharges (SWDs) in the EEG and interruption of consciousness and ongoing behavior. Genetic (inbred) models of this disorder in rats have been used to examine mechanisms, comorbidities, and antiabsence drugs. SWDs have also been proposed as models of complex partial seizures (CPSs) following traumatic brain injury (post-traumatic epilepsy). However, the ictal characteristics of these rat models, including SWDs and associated immobility, are also prevalent in healthy outbred laboratory rats. We therefore hypothesized that SWDs are not always associated with classically defined absence seizures or CPSs. To test this hypothesis, we used operant conditioning in male rats to determine whether outbred strains, Sprague Dawley and Long–Evans, and/or the inbred WAG/Rij strain (a rat model of heritable human absence epilepsy) could exercise voluntary control over these epileptiform events. We discovered that both inbred and outbred rats could shorten the duration of SWDs to obtain a reward. These results indicate that SWD and associated immobility in rats may not reflect the obvious cognitive/behavioral interruption classically associated with absence seizures or CPSs in humans. One interpretation of these results is that human absence seizures and perhaps CPSs could permit a far greater degree of cognitive capacity than often assumed and might be brought under voluntary control in some cases. However, these results also suggest that SWDs and associated immobility may be nonepileptic in healthy outbred rats and reflect instead voluntary rodent behavior unrelated to genetic manipulation or to brain trauma. SIGNIFICANCE STATEMENT Our evidence that inbred and outbred rats learn to control the duration of spike–wave discharges (SWDs) suggests a voluntary behavior with maintenance of consciousness. If SWDs model mild absence seizures and/or complex partial seizures in humans, then an opportunity may exist for operant control complementing or in some cases replacing medication. Their equal occurrence in outbred rats also implies a major potential confound for behavioral neuroscience experiments, at least in adult rats where SWDs are prevalent. Alternatively, the presence and voluntary control of SWDs in healthy outbred rats could indicate that these phenomena do not always model heritable absence epilepsy or post-traumatic epilepsy in humans, and may instead reflect typical rodent behavior.
Journal of Neurophysiology | 2006
Krista M. Rodgers; Alexander M. Benison; Daniel S. Barth
Archive | 2011
Daniel S. Barth; Krista M. Rodgers