Kristen J. Skvorak
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristen J. Skvorak.
Brain | 2008
William J. Zinnanti; Jelena Lazovic; Kathleen Griffin; Kristen J. Skvorak; Harbhajan S. Paul; Gregg E. Homanics; Maria C. Bewley; Keith C. Cheng; Kathryn F. LaNoue; John M. Flanagan
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branched-chain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress.
Hepatology | 2011
Fabio Marongiu; Roberto Gramignoli; Kenneth Dorko; Toshio Miki; Aarati Ranade; Maria Paola Serra; Silvia Doratiotto; Marcella Sini; Shringi Sharma; Keitaro Mitamura; Tiffany L. Sellaro; Veysel Tahan; Kristen J. Skvorak; Ewa Ellis; Stephen F. Badylak; Julio Davila; Ronald N. Hines; Ezio Laconi; Stephen C. Strom
Hepatocyte transplantation to treat liver disease is largely limited by the availability of useful cells. Human amniotic epithelial cells (hAECs) from term placenta express surface markers and gene characteristics of embryonic stem cells and have the ability to differentiate into all three germ layers, including tissues of endodermal origin (i.e., liver). Thus, hAECs could provide a source of stem cell–derived hepatocytes for transplantation. We investigated the differentiation of hAECs in vitro and after transplantation into the livers of severe combined immunodeficient (SCID)/beige mice. Moreover, we tested the ability of rat amniotic epithelial cells (rAECs) to replicate and differentiate upon transplantation into a syngenic model of liver repopulation. In vitro results indicate that the presence of extracellular matrix proteins together with a mixture of growth factors, cytokines, and hormones are required for differentiation of hAECs into hepatocyte‐like cells. Differentiated hAECs expressed hepatocyte markers at levels comparable to those of fetal hepatocytes. They were able to metabolize ammonia, testosterone, and 17α‐hydroxyprogesterone caproate, and expressed inducible fetal cytochromes. After transplantation into the liver of retrorsine (RS)‐treated SCID/beige mice, naïve hAECs differentiated into hepatocyte‐like cells that expressed mature liver genes such as cytochromes, plasma proteins, transporters, and other hepatic enzymes at levels equal to adult liver tissue. When transplanted in a syngenic animal pretreated with RS, rAECs were able to engraft and generate a progeny of cells with morphology and protein expression typical of mature hepatocytes. Conclusion: Amniotic epithelial cells possess the ability to differentiate into cells with characteristics of functional hepatocytes both in vitro and in vivo, thus representing a useful and noncontroversial source of cells for transplantation. (HEPATOLOGY 2011;)
BMC Medical Genetics | 2006
Gregg E. Homanics; Kristen J. Skvorak; Carolyn Ferguson; Simon C. Watkins; Harbhajan S. Paul
BackgroundMaple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model.MethodsTo create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels.ResultsBy disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5–6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model.ConclusionThese mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease.
Cell Transplantation | 2012
Roberto Gramignoli; Green Ml; Tahan; Kenneth Dorko; Kristen J. Skvorak; Fabio Marongiu; Zao W; Raman Venkataramanan; Ewa Ellis; Geller D; Breite Ag; Dwulet Fe; McCarthy Rc; Stephen C. Strom
Human hepatocyte transplantation is gaining acceptance for the treatment of liver diseases. However, the reagents used to isolate hepatocytes from liver tissue are not standardized and show lot-to-lot variability in enzyme activity and endotoxin contamination. For clinical application, highly purified reagents are preferable to crude digest preparations. A purified tissue dissociating enzyme (TDE) preparation (CIzyme™ purified enzymes) was developed based on the enzyme compositions found in a superior lot of collagenase previously used by our group for human hepatocyte isolation. The performance of this enzyme preparation was compared to collagenase type XI on 110 liver cases by assessing hepatocyte yield, viability, and seven other functional assays that included plating efficiency, basal and induced CYP450 activities, phase II conjugation activity, and ammonia metabolism. No statistically significant difference was observed between these TDEs when they were used to isolate hepatocytes from liver resections or organ donor tissue on 54 hepatocyte isolations with type XI enzyme and 56 isolations using CIzyme™. These results show that a highly purified and defined TDE preparation can be formulated that provides excellent performance with respect to viability, yield, and functional activity of the isolated cells. In addition to reproducible formulation, these purified enzyme products have only 2–3% of the endotoxin of crude enzyme preparations. These results show that purified enzymes such as CIzyme™ will be a safe and effective for the isolation of human hepatocytes for clinical transplants.
Current protocols in immunology | 2014
Marc C. Hansel; Roberto Gramignoli; Kristen J. Skvorak; Kenneth Dorko; Fabio Marongiu; William Blake; Julio Davila; Stephen C. Strom
Orthotopic liver transplantation remains the only curative treatment for many end‐stage liver diseases, yet the number of patients receiving liver transplants remains limited by the number of organs available for transplant. There is a need for alternative therapies for liver diseases. The transplantation of isolated hepatocytes (liver cells) has been used as an experimental therapy for liver disease in a limited number of cases. Recently, the 100th case of hepatocyte transplantation was reported. This review discusses the history of the hepatocyte transplant field, the major discoveries that supported and enabled the first hepatocyte transplants, and reviews the cases and outcomes of the first 100 clinical transplants. Some of the problems that limit the application or efficacy of hepatocyte transplantation are discussed, as are possible solutions to these problems. In conclusion, hepatocyte transplants have proven effective particularly in cases of metabolic liver disease where reversal or amelioration of the characteristic symptoms of the disease is easily quantified. However, no patients have been completely corrected of a metabolic liver disease for a significant amount of time by hepatocyte transplantation alone. It is likely that future developments in new sources of cells for transplantation will be required before this cellular therapy can be fully implemented and available for large numbers of patients.
Hepatology | 2013
Kristen J. Skvorak; Kenneth Dorko; Fabio Marongiu; Veysel Tahan; Marc C. Hansel; Roberto Gramignoli; K. Michael Gibson; Stephen C. Strom
There is improved survival and partial metabolic correction of a mouse intermediate maple syrup urine disease (iMSUD) model after allogenic hepatocyte transplantation, confirming that a small number of enzyme‐proficient liver‐engrafted cells can improve phenotype. However, clinical shortages of suitable livers for hepatocyte isolation indicate a need for alternative cell sources. Human amnion epithelial cells (hAECs) share stem cell characteristics without the latters safety and ethical concerns and differentiate to hepatocyte‐like cells. Eight direct hepatic hAEC transplantations were performed in iMSUD mice over the first 35 days beginning at birth; animals were provided a normal protein diet and sacrificed at 35 and 100 days. Treatment at the neonatal stage is clinically relevant for MSUD and may offer a donor cell engraftment advantage. Survival was significantly extended and body weight was normalized in iMSUD mice receiving hAEC transplantations compared with untreated iMSUD mice, which were severely cachectic and died ≤28 days after birth. Branched chain α‐keto acid dehydrogenase enzyme activity was significantly increased in transplanted livers. The branched chain amino acids leucine, isoleucine, valine, and alloisoleucine were significantly improved in serum and brain, as were other large neutral amino acids. Conclusion: Placental‐derived stem cell transplantation lengthened survival and corrected many amino acid imbalances in a mouse model of iMSUD. This highlights the potential for their use as a viable alternative clinical therapy for MSUD and other liver‐based metabolic diseases. (HEPATOLOGY 2013)
Molecular Therapy | 2009
Kristen J. Skvorak; Harbhajan S. Paul; Kenneth Dorko; Fabio Marongiu; Ewa Ellis; Donald Chace; Carolyn Ferguson; K. Michael Gibson; Gregg E. Homanics; Stephen C. Strom
Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.
Biochimica et Biophysica Acta | 2009
Kristen J. Skvorak; Elizabeth J. Hager; Erland Arning; Teodoro Bottiglieri; Harbhajan S. Paul; Stephen C. Strom; Gregg E. Homanics; Qin Sun; Erwin E.W. Jansen; C. Jakobs; William J. Zinnanti; K. Michael Gibson
Skvorak et al. [1] demonstrated the therapeutic efficacy of HTx in a murine model of iMSUD, confirming significant metabolic improvement and survival. To determine the effect of HTx on extrahepatic organs, we examined the metabolic effects of HTx in brain from iMSUD animals. Amino acid analysis revealed that HTx corrected increased ornithine, partially corrected depleted glutamine, and revealed a trend toward alloisoleucine correction. For amino acid and monoamine neurotransmitters, decreased GABA was partially corrected with HTx, while the l-histidine dipeptide of GABA, homocarnosine, was decreased in iMSUD mice and hypercorrected following HTx. Elevated branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in MSUD can deplete brain tyrosine and tryptophan (the precursors of monoamine neurotransmitters, dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT)) through competition via the large neutral amino acid transporter. HTx corrected decreased DA levels and the DA metabolite, 3-methoxytyramine, and partially corrected the DA intermediate 3,4-dihydroxyphenylacetate (DOPAC) and 5-HT levels, despite normal tyrosine and tryptophan levels in iMSUD mouse brain. We further observed enhanced intracellular turnover of both DA and 5-HT in iMSUD mouse brain, both of which partially corrected with HTx. Our results suggest new pathomechanisms of neurotransmitter metabolism in this disorder and support the therapeutic relevance of HTx in iMSUD mice, while providing proof-of-principle that HTx has corrective potential in extrahepatic organs.
Molecular Genetics and Metabolism | 2013
Kristen J. Skvorak; Kenneth Dorko; Fabio Marongiu; Veysel Tahan; Marc C. Hansel; Roberto Gramignoli; Erland Arning; Teodoro Bottiglieri; K. Michael Gibson; Stephen C. Strom
Orthotopic liver transplant (OLT) significantly improves patient outcomes in maple syrup urine disease (MSUD; OMIM: 248600), yet organ shortages point to the need for alternative therapies. Hepatocyte transplantation has shown both clinical and preclinical efficacy as an intervention for metabolic liver diseases, yet the availability of suitable livers for hepatocyte isolation is also limited. Conversely, human amnion epithelial cells (hAEC) may have utility as a hepatocyte substitute, and they share many of the characteristics of pluripotent embryonic stem cells while lacking their safety and ethical concerns. We reported that like hepatocytes, transplantation of hAEC significantly improved survival and lifespan, normalized body weight, and significantly improved branched-chain amino acid (BCAA) levels in sera and brain in a transgenic murine model of intermediate maple syrup urine disease (imsud). In the current report, we detail the neural and peripheral metabolic improvements associated with hAEC transplant in imsud mice, including amino acids associated with bioenergetics, the urea cycle, as well as the neurotransmitter systems for serotonin, dopamine, and gamma-aminobutyric acid (GABA). This stem cell therapy results in significant global correction of the metabolic profile that characterizes the disease, both in the periphery and the central nervous system, the target organ for toxicity in iMSUD. The significant correction of the disease phenotype, coupled with the theoretical benefits of hAEC, particularly their lack of immunogenicity and tumorigenicity, suggests that human amnion epithelial cells deserve serious consideration for clinical application to treat metabolic liver diseases.
Stem Cells and Development | 2013
Stephen C. Strom; Kristen J. Skvorak; Roberto Gramignoli; Fabio Marongiu; Toshio Miki
Cellular therapy for liver disease has been available in the clinic for more than 20 years, yet remarkably few patients receive this experimental therapy. Reasons for the small number of transplants performed are partially related to access to useful liver tissue and the difficulty with the isolation of viable cells. Stem cell sources of hepatocytes could theoretically relieve these obstacles to therapy if large numbers of functional hepatocytes could be generated and transplanted without risk of tumorigenicity. To date, there are no reports of stem cell sources with all of these characteristics, despite claims otherwise. Here we report the results of preclinical studies with appropriate animals models of metabolic liver disease and acute liver failure, and their correction by the transplantation of human amnion epithelial stem cells. The encouraging results of the preclinical studies have motivated the movement of isolation and banking of these cells to good manufacturing practice conditions so that the cells can be used in the clinic for transplantation of patients with liver disease.