Kristen L. Huber
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristen L. Huber.
International Journal of Cosmetic Science | 2015
J.R. Fernandez; Karl Rouzard; Michael Voronkov; Kristen L. Huber; Jeffry B. Stock; Maxwell Stock; Joel S. Gordon
The skin is the first line of defence against exposure to microbial, physical, environmental and chemical insults. In mobilizing a protective response, several different cell types located in our skin release and respond to pro‐inflammatory cytokines ensuring skin homeostasis and health. However, chronic activation of this response eventually causes damage resulting in premature ageing. Diosodium tetramethylhexadecenyl succinyl cysteine (TSC or SIG1273), an isoprenylcysteine small molecule, down modulates these inflammatory signalling pathways in various cell types (keratinocytes, peripheral blood mononuclear cells (PBMCs) and endothelial cells) and possesses anti‐bacterial properties. Thus, TSC represents a novel cosmetic functional ingredient that provides a broad spectrum of benefits for the skin.
PLOS ONE | 2017
Kesava Asam; Agnieszka Staniszewski; Hong Zhang; Scott L. Melideo; Adolfo Mazzeo; Michael Voronkov; Kristen L. Huber; Maxwell Stock; Jeffry B. Stock; Ottavio Arancio; Russell E. Nicholls; Masuo Ohno
Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzheimer’s disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson’s disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aβ-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aβ-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.
Journal of Cosmetic Dermatology | 2016
J.R. Fernandez; Karl Rouzard; Michael Voronkov; Kristen L. Huber; C. Webb; Jeffry B. Stock; Maxwell Stock; Joel S. Gordon
Isoprenylcysteine (IPC) small molecules were identified as a new class of anti‐inflammatory compounds over 20 years ago. Since then, they have been developed as novel cosmetic functional ingredients (CFI) and topical drug candidates. SIG1273 is a second generation CFI that has previously been shown to provide a broad spectrum of benefits for the skin through its anti‐inflammatory and antimicrobial properties.
Experimental Dermatology | 2018
J.R. Fernandez; C. Webb; Karl Rouzard; Jason Healy; Masanori Tamura; Michael Voronkov; Kristen L. Huber; Jeffry B. Stock; Maxwell Stock; Joel S. Gordon; Edwardo Pérez
Cutibacterium (formerly Propionibacterium acnes) is a major contributor to the pathogenesis of acne. C. acnes initiates an innate immune response in keratinocytes via recognition and activation of toll‐like receptor‐2 (TLR2), a key step in comedogenesis. Tetramethyl‐hexadecenyl‐cysteine‐formylprolinate (SIG1459), a novel anti‐acne isoprenylcysteine (IPC) small molecule, is shown in this study to have direct antibacterial activity and inhibit TLR2 inflammatory signalling. In vitro antibacterial activity of SIG1459 against C. acnes was established demonstrating minimal inhibitory concentration (MIC = 8.5 μmol\L), minimal bactericidal concentration (MBC = 16.1 μmol\L) and minimal biofilm eradication concentration (MBEC = 12.5 μmol\L). To assess SIG1459s anti‐inflammatory activity, human keratinocytes were exposed to C. acnes and different TLR2 ligands (peptidoglycan, FSL‐1, Pam3CSK4) that induce pro‐inflammatory cytokine IL‐8 and IL‐1α production. Results demonstrate SIG1459 inhibits TLR2‐induced IL‐8 release from TLR2/TLR2 (IC50 = 0.086 μmol\L), TLR2/6 (IC50 = 0.209 μmol\L) and IL‐1α from TLR2/TLR2 (IC50 = 0.050 μmol\L). To assess the safety and in vivo anti‐acne activity of SIG1459, a vehicle controlled clinical study was conducted applying 1% SIG1459 topically (n = 35 subjects) in a head‐to‐head comparison against 3% BPO (n = 15 subjects). Utilizing the Investigator Global Assessment scale for acne as primary endpoint, results demonstrate 1% SIG1459 significantly outperformed 3% BPO over 8 weeks, resulting in 79% improvement as compared to 56% for BPO. Additionally, 1% SIG1459 was well tolerated. Thus, SIG1459 and phytyl IPC compounds represent a novel anti‐acne technology that provides a safe dual modulating benefit by killing C. acnes and reducing the inflammation it triggers via TLR2 signalling.
Biochemical Journal | 2018
Kristen L. Huber; Banyuhay P. Serrano; Jeanne A. Hardy
Caspase-9 is a critical factor in the initiation of apoptosis and as a result is tightly regulated by many mechanisms. Caspase-9 contains a Caspase Activation and Recruitment Domain (CARD), which enables caspase-9 to form a tight interaction with the apoptosome, a heptameric activating platform. The caspase-9 CARD has been thought to be principally involved in recruitment to the apoptosome, but its roles outside this interaction have yet to be uncovered. In this work, we show that the CARD is involved in physical interactions with the catalytic core of caspase-9 in the absence of the apoptosome; this interaction requires a properly formed caspase-9 active site. The active sites of caspases are composed of four extremely mobile loops. When the active-site loops are not properly ordered, the CARD and core domains of caspase-9 do not interact and behave independently, like loosely tethered beads. When the active-site loop bundle is properly ordered, the CARD domain interacts with the catalytic core, forming a single folding unit. Taken together, these findings provide mechanistic insights into a new level of caspase-9 regulation, prompting speculation that the CARD may also play a role in the recruitment or recognition of substrate.
Journal of Investigative Dermatology | 2018
J.R. Fernandez; Karl Rouzard; C. Webb; Michael Voronkov; Kristen L. Huber; Jeff Stock; Maxwell Stock; Joel S. Gordon; W.L. Armbrister
Archive | 2017
Jeffry B. Stock; Maxwell Stock; Michael Voronkov; J.R. Fernandez; Kristen L. Huber
Journal of Investigative Dermatology | 2017
J.R. Fernandez; Karl Rouzard; C. Webb; Michael Voronkov; J. Healy; Kristen L. Huber; Jeff Stock; Maxwell Stock; Joel S. Gordon
Journal of Investigative Dermatology | 2017
J.R. Fernandez; Karl Rouzard; C. Webb; Michael Voronkov; J. Healy; Kristen L. Huber; Jeff Stock; Maxwell Stock; Joel S. Gordon
Journal of Investigative Dermatology | 2017
J.R. Fernandez; Karl Rouzard; C. Webb; Michael Voronkov; J. Healy; Kristen L. Huber; Jeff Stock; Maxwell Stock; Joel S. Gordon