Kristen V. Dicks
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristen V. Dicks.
Infection Control and Hospital Epidemiology | 2015
Michael J. Durkin; Kristen V. Dicks; Arthur W. Baker; Sarah S. Lewis; Rebekah W. Moehring; Luke F. Chen; Daniel J. Sexton; Deverick J. Anderson
OBJECTIVE To evaluate seasonal variation in the rate of surgical site infections (SSI) following commonly performed surgical procedures. DESIGN Retrospective cohort study. METHODS We analyzed 6 years (January 1, 2007, through December 31, 2012) of data from the 15 most commonly performed procedures in 20 hospitals in the Duke Infection Control Outreach Network. We defined summer as July through September. First, we performed 3 separate Poisson regression analyses (unadjusted, multivariable, and polynomial) to estimate prevalence rates and prevalence rate ratios of SSI following procedures performed in summer versus nonsummer months. Then, we stratified our results to obtain estimates based on procedure type and organism type. Finally, we performed a sensitivity analysis to test the robustness of our findings. RESULTS We identified 4,543 SSI following 441,428 surgical procedures (overall prevalence rate, 1.03/100 procedures). The rate of SSI was significantly higher during the summer compared with the remainder of the year (1.11/100 procedures vs 1.00/100 procedures; prevalence rate ratio, 1.11 [95% CI, 1.04-1.19]; P=.002). Stratum-specific SSI calculations revealed higher SSI rates during the summer for both spinal (P=.03) and nonspinal (P=.004) procedures and revealed higher rates during the summer for SSI due to either gram-positive cocci (P=.006) or gram-negative bacilli (P=.004). Multivariable regression analysis and sensitivity analyses confirmed our findings. CONCLUSIONS The rate of SSI following commonly performed surgical procedures was higher during the summer compared with the remainder of the year. Summer SSI rates remained elevated after stratification by organism and spinal versus nonspinal surgery, and rates did not change after controlling for other known SSI risk factors.
Journal of Neurosurgery | 2015
Michael J. Durkin; Kristen V. Dicks; Arthur W. Baker; Rebekah W. Moehring; Luke F. Chen; Daniel J. Sexton; Sarah S. Lewis; Deverick J. Anderson
OBJECT The relationship between time of year and surgical site infection (SSI) following neurosurgical procedures is poorly understood. Authors of previous reports have demonstrated that rates of SSI following neurosurgical procedures performed during the summer months were higher compared with rates during other seasons. It is unclear, however, if this difference was related to climatological changes or inexperienced medical trainees (the July effect). The aim of this study was to evaluate for seasonal variation of SSI following spine surgery in a network of nonteaching community hospitals. METHODS The authors analyzed 6 years of prospectively collected surveillance data (January 1, 2007, to December 31, 2012) from all laminectomies and spinal fusions from 20 hospitals in the Duke Infection Control Outreach Network of community hospitals. Surgical site infections were defined using National Healthcare Safety Network criteria and identified using standardized methods across study hospitals. Regression models were then constructed using Poisson distribution to evaluate for seasonal trends by month. Each analysis was first performed for all SSIs and then for SSIs caused by specific organisms or classes of organisms. Categorical analysis was performed using two separate definitions of summer: June through September (definition 1), and July through September (definition 2). The prevalence rate of SSIs during the summer was compared with the prevalence rate during the remainder of the year by calculating prevalence rate ratios and 95% confidence intervals. RESULTS The authors identified 642 SSIs following 57,559 neurosurgical procedures (overall prevalence rate = 1.11/100 procedures); 215 occurred following 24,466 laminectomies (prevalence rate = 0.88/100 procedures), and 427 following 33,093 spinal fusions (prevalence rate = 1.29/100 procedures). Common causes of SSI were Staphylococcus aureus (n = 380; 59%), coagulase-negative staphylococci (n = 90; 14%), and Escherichia coli (n = 41; 6.4%). Poisson regression models demonstrated increases in the rates of SSI during each of the summer months for all SSIs and SSIs due to gram-positive cocci, S. aureus, and methicillin-sensitive S. aureus. Categorical analysis confirmed that the rate of SSI during the 4-month summer period was higher than the rate during the remainder of the year, regardless of which definition for summer was used (definition 1, p = 0.008; definition 2, p = 0.003). Similarly, the rates of SSI due to grampositive cocci and S. aureus were higher during the summer months than the remainder of the year regardless of which definition of summer was used. However, the rate of SSI due to gram-negative bacilli was not. CONCLUSIONS The rate of SSI following fusion or spinal laminectomy/laminoplasty was higher during the summer in this network of community hospitals. The increase appears to be related to increases in SSIs caused by gram-positive cocci and, more specifically, S. aureus. Given the nonteaching nature of these hospitals, the findings demonstrate that increases in the rate of SSI during the summer are more likely related to ecological and/or environmental factors than the July effect.
JAMA Internal Medicine | 2014
Rebekah W. Moehring; Sarah S. Lewis; Pamela J. Isaacs; Wiley A. Schell; Wayne R. Thomann; Mary M. Althaus; Kevin C. Hazen; Kristen V. Dicks; John J. LiPuma; Luke F. Chen; Daniel J. Sexton
IMPORTANCE Many health care facilities compound medications on site to fulfill local demands when customized formulations are needed, national supply is critically low, or costs for manufactured pharmaceuticals are excessive. Small, institutional compounding facilities may perform the same high-risk procedures as large distributors of compounded medications. OBJECTIVES To investigate an outbreak related to contamination of compounded sterile preparations and to determine processes to prevent future outbreaks. DESIGN, SETTING, AND PARTICIPANTS We performed an outbreak investigation of inpatients at Duke University Hospital from August 31 through September 6, 2012. The investigation included a case-control study, compounding facility inspection and environmental sampling, observation of a mock compounding demonstration, and microbiologic and molecular testing of sequestered medication. EXPOSURES Intravenous fentanyl prepared by an institutional compounding pharmacy. MAIN OUTCOMES AND MEASURES Microbiologic and molecular evidence of contamination of a compounded sterile preparation and failure of routine sterility testing. RESULTS Blood cultures of 7 patients during a 7-day period at Duke University Hospital yielded pan-susceptible Burkholderia cepacia complex bacteria. The risk factor common to all patients was receipt of continuous fentanyl infusion prepared by our institutional compounding pharmacy (odds ratio, 11.22; 95% CI, 2.09-∞; P = .01). The outbreak was terminated after sequestration of compounded fentanyl. An intensive evaluation of the compounding facility, its practice, and its procedures was completed. Investigators evaluated the clean room, collected targeted microbiologic samples within the compounding pharmacy environment, and observed a mock demonstration of compounding practice. The B cepacia complex was found in the anteroom sink drain and pH probe calibration fluid from the compounding clean room. Multiple microbiologic analyses of sequestered fentanyl initially failed. Ultimately, a batched, vacuum-assisted filtration method produced B cepacia complex from a single lot. Molecular analyses using repetitive element polymerase chain reaction and pulsed-field gel electrophoresis confirmed a clonal Burkholderia contaminans strain from patients, fentanyl, and environmental samples. CONCLUSIONS AND RELEVANCE An outbreak of B contaminans bacteremia was linked to contamination of locally compounded intravenous fentanyl. Health care facilities that house institutional compounding facilities must be vigilant in efforts to prevent, recognize, and terminate medication-related outbreaks.
Infection Control and Hospital Epidemiology | 2014
Kristen V. Dicks; Sarah S. Lewis; Michael J. Durkin; Arthur W. Baker; Rebekah W. Moehring; Luke F. Chen; Daniel J. Sexton; Deverick J. Anderson
The updated 2013 Centers for Disease Control and Prevention/National Healthcare Safety Network definitions for surgical site infections (SSIs) reduced the duration of prolonged surveillance from 1 year to 90 days and defined which procedure types require prolonged surveillance. Applying the updated 2013 SSI definitions to cases analyzed using the pre-2013 surveillance definitions excluded 10% of previously identified SSIs.
Infection Control and Hospital Epidemiology | 2015
Michael J. Durkin; Arthur W. Baker; Kristen V. Dicks; Sarah S. Lewis; Luke F. Chen; Deverick J. Anderson; Daniel J. Sexton; Rebekah W. Moehring
OBJECTIVE Hospitals in the National Healthcare Safety Network began reporting laboratory-identified (LabID) Clostridium difficile infection (CDI) events in January 2013. Our study quantified the differences between the LabID and traditional surveillance methods. DESIGN Cohort study. SETTING A cohort of 29 community hospitals in the southeastern United States. METHODS A period of 6 months (January 1, 2013, to June 30, 2013) of prospectively collected data using both LabID and traditional surveillance definitions were analyzed. CDI events with mismatched surveillance categories between LabID and traditional definitions were identified and characterized further. Hospital-onset CDI (HO-CDI) rates for the entire cohort of hospitals were calculated using each method, then hospital-specific HO-CDI rates and standardized infection ratios (SIRs) were calculated. Hospital rankings based on each CDI surveillance measure were compared. RESULTS A total of 1,252 incident LabID CDI events were identified during 708,551 patient-days; 286 (23%) mismatched CDI events were detected. The overall HO-CDI rate was 6.0 vs 4.4 per 10,000 patient-days for LabID and traditional surveillance, respectively (P<.001); of 29 hospitals, 25 (86%) detected a higher CDI rate using LabID compared with the traditional method. Hospital rank in the cohort differed greatly between surveillance measures. A rank change of at least 5 places occurred in 9 of 28 hospitals (32%) between LabID and traditional CDI surveillance methods, and for SIR. CONCLUSIONS LabID surveillance resulted in a higher hospital-onset CDI incidence rate than did traditional surveillance. Hospital-specific rankings varied based on the HO-CDI surveillance measure used. A clear understanding of differences in CDI surveillance measures is important when interpreting national and local CDI data.
Infection Control and Hospital Epidemiology | 2016
Arthur W. Baker; Kristen V. Dicks; Michael J. Durkin; David J. Weber; Sarah S. Lewis; Rebekah W. Moehring; Luke F. Chen; Daniel J. Sexton; Deverick J. Anderson
OBJECTIVE To describe the epidemiology of complex surgical site infection (SSI) following commonly performed surgical procedures in community hospitals and to characterize trends of SSI prevalence rates over time for MRSA and other common pathogens METHODS We prospectively collected SSI data at 29 community hospitals in the southeastern United States from 2008 through 2012. We determined the overall prevalence rates of SSI for commonly performed procedures during this 5-year study period. For each year of the study, we then calculated prevalence rates of SSI stratified by causative organism. We created log-binomial regression models to analyze trends of SSI prevalence over time for all pathogens combined and specifically for MRSA. RESULTS A total of 3,988 complex SSIs occurred following 532,694 procedures (prevalence rate, 0.7 infections per 100 procedures). SSIs occurred most frequently after small bowel surgery, peripheral vascular bypass surgery, and colon surgery. Staphylococcus aureus was the most common pathogen. The prevalence rate of SSI decreased from 0.76 infections per 100 procedures in 2008 to 0.69 infections per 100 procedures in 2012 (prevalence rate ratio [PRR], 0.90; 95% confidence interval [CI], 0.82-1.00). A more substantial decrease in MRSA SSI (PRR, 0.69; 95% CI, 0.54-0.89) was largely responsible for this overall trend. CONCLUSIONS The prevalence of MRSA SSI decreased from 2008 to 2012 in our network of community hospitals. This decrease in MRSA SSI prevalence led to an overall decrease in SSI prevalence over the study period.
Open Forum Infectious Diseases | 2015
Joel C. Boggan; Arthur W. Baker; Sarah S. Lewis; Kristen V. Dicks; Michael J. Durkin; Rebekah W. Moehring; Luke F. Chen; Lauren P. Knelson; Donald D. Hegland; Deverick J. Anderson
Background. The optimum approach for infectious complication surveillance for cardiac implantable electronic device (CIED) procedures is unclear. We created an automated surveillance tool for infectious complications after CIED procedures. Methods. Adults having CIED procedures between January 1, 2005 and December 31, 2011 at Duke University Hospital were identified retrospectively using International Classification of Diseases, 9th revision (ICD-9) procedure codes. Potential infections were identified with combinations of ICD-9 diagnosis codes and microbiology data for 365 days postprocedure. All microbiology-identified and a subset of ICD-9 code-identified possible cases, as well as a subset of procedures without microbiology or ICD-9 codes, were reviewed. Test performance characteristics for specific queries were calculated. Results. Overall, 6097 patients had 7137 procedures. Of these, 1686 procedures with potential infectious complications were identified: 174 by both ICD-9 code and microbiology, 14 only by microbiology, and 1498 only by ICD-9 criteria. We reviewed 558 potential cases, including all 188 microbiology-identified cases, 250 randomly selected ICD-9 cases, and 120 with neither. Overall, 65 unique infections were identified, including 5 of 250 reviewed cases identified only by ICD-9 codes. Queries that included microbiology data and ICD-9 code 996.61 had good overall test performance, with sensitivities of approximately 90% and specificities of approximately 80%. Queries with ICD-9 codes alone had poor specificity. Extrapolation of reviewed infectious rates to nonreviewed cases yields an estimated rate of infection of 1.3%. Conclusions. Electronic queries with combinations of ICD-9 codes and microbiologic data can be created and have good test performance characteristics for identifying likely infectious complications of CIED procedures.
Infection Control and Hospital Epidemiology | 2015
Kristen V. Dicks; Arthur W. Baker; Michael J. Durkin; Sarah S. Lewis; Rebekah W. Moehring; Deverick J. Anderson; Daniel J. Sexton; Luke F. Chen
Funguria rarely represents true infection in the urinary tract. Excluding yeast from the catheter-associated urinary tract infection (CAUTI) surveillance definition reduced CAUTI rates by nearly 25% in community hospitals and at an academic, tertiary-care medical center.
Infection Control and Hospital Epidemiology | 2016
Kristen V. Dicks; Eric Lofgren; Sarah S. Lewis; Rebekah W. Moehring; Daniel J. Sexton; Deverick J. Anderson
OBJECTIVE To determine whether daily chlorhexidine gluconate (CHG) bathing of intensive care unit (ICU) patients leads to a decrease in hospital-acquired infections (HAIs), particularly infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). DESIGN Interrupted time series analysis. SETTING The study included 33 community hospitals participating in the Duke Infection Control Outreach Network from January 2008 through December 2013. PARTICIPANTS All ICU patients at study hospitals during the study period. METHODS Of the 33 hospitals, 17 hospitals implemented CHG bathing during the study period, and 16 hospitals that did not perform CHG bathing served as controls. Primary pre-specified outcomes included ICU central-line-associated bloodstream infections (CLABSIs), primary bloodstream infections (BSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infections (CAUTIs). MRSA and VRE HAIs were also evaluated. RESULTS Chlorhexidine gluconate (CHG) bathing was associated with a significant downward trend in incidence rates of ICU CLABSI (incidence rate ratio [IRR], 0.96; 95% confidence interval [CI], 0.93-0.99), ICU primary BSI (IRR, 0.96; 95% CI, 0.94-0.99), VRE CLABSIs (IRR, 0.97; 95% CI, 0.97-0.98), and all combined VRE infections (IRR, 0.96; 95% CI, 0.93-1.00). No significant trend in MRSA infection incidence rates was identified prior to or following the implementation of CHG bathing. CONCLUSIONS In this multicenter, real-world analysis of the impact of CHG bathing, hospitals that implemented CHG bathing attained a decrease in ICU CLABSIs, ICU primary BSIs, and VRE CLABSIs. CHG bathing did not affect rates of specific or overall infections due to MRSA. Our findings support daily CHG bathing of ICU patients. Infect Control Hosp Epidemiol 2016;37:791-797.
Infection Control and Hospital Epidemiology | 2015
Kristen V. Dicks; Arthur W. Baker; Michael J. Durkin; Deverick J. Anderson; Rebekah W. Moehring; Luke F. Chen; Daniel J. Sexton; David J. Weber; Sarah S. Lewis
OBJECTIVE To determine the association (1) between shorter operative duration and surgical site infection (SSI) and (2) between surgeon median operative duration and SSI risk among first-time hip and knee arthroplasties. DESIGN Retrospective cohort study SETTING A total of 43 community hospitals located in the southeastern United States. PATIENTS Adults who developed SSIs according to National Healthcare Safety Network criteria within 365 days of first-time knee or hip arthroplasties performed between January 1, 2008 and December 31, 2012. METHODS Log-binomial regression models estimated the association (1) between operative duration and SSI outcome and (2) between surgeon median operative duration and SSI outcome. Hip and knee arthroplasties were evaluated in separate models. Each model was adjusted for American Society of Anesthesiology score and patient age. RESULTS A total of 25,531 hip arthroplasties and 42,187 knee arthroplasties were included in the study. The risk of SSI in knee arthroplasties with an operative duration shorter than the 25th percentile was 0.40 times the risk of SSI in knee arthroplasties with an operative duration between the 25th and 75th percentile (risk ratio [RR], 0.40; 95% confidence interval [CI], 0.38-0.56; P<.01). Short operative duration did not demonstrate significant association with SSI for hip arthroplasties (RR, 1.04; 95% CI, 0.79-1.37; P=.36). Knee arthroplasty surgeons with shorter median operative durations had a lower risk of SSI than surgeons with typical median operative durations (RR, 0.52; 95% CI, 0.43-0.64; P<.01). CONCLUSIONS Short operative durations were not associated with a higher SSI risk for knee or hip arthroplasty procedures in our analysis.