Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristi J. Jones is active.

Publication


Featured researches published by Kristi J. Jones.


Muscle & Nerve | 2014

Ataluren treatment of patients with nonsense mutation dystrophinopathy

K. Bushby; R. Finkel; Brenda Wong; Richard J. Barohn; Craig Campbell; Giacomo P. Comi; Anne M. Connolly; John W. Day; Kevin M. Flanigan; Nathalie Goemans; Kristi J. Jones; Eugenio Mercuri; R. Quinlivan; James B. Renfroe; Barry S. Russman; Monique M. Ryan; Mar Tulinius; Thomas Voit; Steven A. Moore; H. Lee Sweeney; Richard T. Abresch; Kim L. Coleman; Michelle Eagle; Julaine Florence; Eduard Gappmaier; Allan M. Glanzman; Erik Henricson; Jay Barth; Gary L. Elfring; A. Reha

Introduction: Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. Methods: Randomized, double‐blind, placebo‐controlled study; males ≥5 years with nm‐dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N = 57); ataluren 20, 20, 40 mg/kg (N = 60); or placebo (N = 57) for 48 weeks. The primary endpoint was change in 6‐Minute Walk Distance (6MWD) at Week 48. Results: Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ = 31.3 meters, post hoc P = 0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. Conclusions: As the first investigational new drug targeting the underlying cause of nm‐dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need. Muscle Nerve 50: 477–487, 2014


Journal of Medical Genetics | 2001

The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review.

Kristi J. Jones; Graeme Morgan; Heather M. Johnston; Vivienne Tobias; Robert Ouvrier; Ian Wilkinson; Kathryn N. North

Initial reports of patients with laminin α2 chain (merosin) deficiency had a relatively homogeneous phenotype, with classical congenital muscular dystrophy (CMD) characterised by severe muscle weakness, inability to achieve independent ambulation, markedly raised creatine kinase, and characteristic white matter hypodensity on cerebral magnetic resonance imaging. We report a series of five patients with laminin α2 deficiency, only one of whom has this severe classical CMD phenotype, and review published reports to characterise the expanded phenotype of laminin α2 deficiency, as illustrated by this case series. While classical congenital muscular dystrophy with white matter abnormality is the commonest phenotype associated with laminin α2 deficiency, 12% of reported cases have later onset, slowly progressive weakness more accurately designated limb-girdle muscular dystrophy. In addition, the following clinical features are reported with increased frequency: mental retardation (∼6%), seizures (∼8%), subclinical cardiac involvement (3-35%), and neuronal migration defects (4%). At least 25% of patients achieve independent ambulation. Notably, three patients with laminin α2 deficiency were asymptomatic, 10 patients had normal MRI (four withLAMA2 mutations reported), and between 10-20% of cases had maximum recorded creatine kinase of less than 1000 U/l. LAMA2 mutations have been identified in 25% of cases. Sixty eight percent of these have the classical congenital muscular dystrophy, but this figure is likely to be affected by ascertainment bias. We conclude that all dystrophic muscle biopsies, regardless of clinical phenotype, should be studied with antibodies to laminin α2. In addition, the use of multiple antibodies to different regions of laminin α2 may increase the diagnostic yield and provide some correlation with severity of clinical phenotype.


European Journal of Human Genetics | 2010

Stickler syndrome caused by COL2A1 mutations: Genotype-phenotype correlation in a series of 100 patients

Kristien Hoornaert; Chantal Dewinter; Thomas Rosenberg; Frits A Beemer; Jules G. Leroy; Laila Bendix; Erik Björck; Maryse Bonduelle; Odile Boute; Valérie Cormier-Daire; Christine E.M. de Die-Smulders; Anne Dieux-Coeslier; Hélène Dollfus; Mariet W. Elting; Andrew Green; Veronica I. Guerci; Raoul C. M. Hennekam; Yvonne Hilhorts-Hofstee; Muriel Holder; Carel B. Hoyng; Kristi J. Jones; Dragana Josifova; Ilkka Kaitila; Suzanne Kjaergaard; Yolande H. Kroes; Kristina Lagerstedt; Melissa Lees; Martine LeMerrer; Cinzia Magnani; Carlo Marcelis

Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome.


American Journal of Human Genetics | 2008

Mutations in Contactin-1, a Neural Adhesion and Neuromuscular Junction Protein, Cause a Familial Form of Lethal Congenital Myopathy

Alison G. Compton; Douglas E. Albrecht; Jane T. Seto; Sandra T. Cooper; Biljana Ilkovski; Kristi J. Jones; Daniel Challis; David Mowat; Barbara Ranscht; Melanie Bahlo; Stanley C. Froehner; Kathryn N. North

We have previously reported a group of patients with congenital onset weakness associated with a deficiency of members of the syntrophin-alpha-dystrobrevin subcomplex and have demonstrated that loss of syntrophin and dystrobrevin from the sarcolemma of skeletal muscle can also be associated with denervation. Here, we have further studied four individuals from a consanguineous Egyptian family with a lethal congenital myopathy inherited in an autosomal-recessive fashion and characterized by a secondary loss of beta2-syntrophin and alpha-dystrobrevin from the muscle sarcolemma, central nervous system involvement, and fetal akinesia. We performed homozygosity mapping and candidate gene analysis and identified a mutation that segregates with disease within CNTN1, the gene encoding for the neural immunoglobulin family adhesion molecule, contactin-1. Contactin-1 transcripts were markedly decreased on gene-expression arrays of muscle from affected family members compared to controls. We demonstrate that contactin-1 is expressed at the neuromuscular junction (NMJ) in mice and man in addition to the previously documented expression in the central and peripheral nervous system. In patients with secondary dystroglycanopathies, we show that contactin-1 is abnormally localized to the sarcolemma instead of exclusively at the NMJ. The cntn1 null mouse presents with ataxia, progressive muscle weakness, and postnatal lethality, similar to the affected members in this family. We propose that loss of contactin-1 from the NMJ impairs communication or adhesion between nerve and muscle resulting in the severe myopathic phenotype. This disorder is part of the continuum in the clinical spectrum of congenital myopathies and congenital myasthenic syndromes.


The Lancet | 2017

Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial

Craig M. McDonald; Craig Campbell; Ricardo Erazo Torricelli; R. Finkel; Kevin M. Flanigan; Nathalie Goemans; Peter T. Heydemann; Anna Kaminska; Janbernd Kirschner; Francesco Muntoni; Andrés Nascimento Osorio; Ulrike Schara; Thomas Sejersen; Perry B. Shieh; H. Lee Sweeney; Haluk Topaloglu; M. Tulinius; Juan J. Vílchez; Thomas Voit; Brenda Wong; Gary L. Elfring; Hans Kroger; Xiaohui Luo; Joseph McIntosh; Tuyen Ong; Peter Riebling; Marcio Souza; Robert Spiegel; Stuart W. Peltz; Eugenio Mercuri

BACKGROUND Duchenne muscular dystrophy (DMD) is a severe, progressive, and rare neuromuscular, X-linked recessive disease. Dystrophin deficiency is the underlying cause of disease; therefore, mutation-specific therapies aimed at restoring dystrophin protein production are being explored. We aimed to assess the efficacy and safety of ataluren in ambulatory boys with nonsense mutation DMD. METHODS We did this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 54 sites in 18 countries located in North America, Europe, the Asia-Pacific region, and Latin America. Boys aged 7-16 years with nonsense mutation DMD and a baseline 6-minute walk distance (6MWD) of 150 m or more and 80% or less of the predicted normal value for age and height were randomly assigned (1:1), via permuted block randomisation (block size of four) using an interactive voice-response or web-response system, to receive ataluren orally three times daily (40 mg/kg per day) or matching placebo. Randomisation was stratified by age (<9 years vs ≥9 years), duration of previous corticosteroid use (6 months to <12 months vs ≥12 months), and baseline 6MWD (<350 m vs ≥350 m). Patients, parents and caregivers, investigational site personnel, PTC Therapeutics employees, and all other study personnel were masked to group allocation until after database lock. The primary endpoint was change in 6MWD from baseline to week 48. We additionally did a prespecified subgroup analysis of the primary endpoint, based on baseline 6MWD, which is reflective of anticipated rates of disease progression over 1 year. The primary analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01826487. FINDINGS Between March 26, 2013, and Aug 26, 2014, we randomly assigned 230 patients to receive ataluren (n=115) or placebo (n=115); 228 patients comprised the intention-to-treat population. The least-squares mean change in 6MWD from baseline to week 48 was -47·7 m (SE 9·3) for ataluren-treated patients and -60·7 m (9·3) for placebo-treated patients (difference 13·0 m [SE 10·4], 95% CI -7·4 to 33·4; p=0·213). The least-squares mean change for ataluren versus placebo in the prespecified subgroups was -7·7 m (SE 24·1, 95% CI -54·9 to 39·5; p=0·749) in the group with a 6MWD of less than 300 m, 42·9 m (15·9, 11·8-74·0; p=0·007) in the group with a 6MWD of 300 m or more to less than 400 m, and -9·5 m (17·2, -43·2 to 24·2; p=0·580) in the group with a 6MWD of 400 m or more. Ataluren was generally well tolerated and most treatment-emergent adverse events were mild to moderate in severity. Eight (3%) patients (n=4 per group) reported serious adverse events; all except one event in the placebo group (abnormal hepatic function deemed possibly related to treatment) were deemed unrelated to treatment. INTERPRETATION Change in 6MWD did not differ significantly between patients in the ataluren group and those in the placebo group, neither in the intention-to-treat population nor in the prespecified subgroups with a baseline 6MWD of less than 300 m or 400 m or more. However, we recorded a significant effect of ataluren in the prespecified subgroup of patients with a baseline 6MWD of 300 m or more to less than 400 m. Baseline 6MWD values within this range were associated with a more predictable rate of decline over 1 year; this finding has implications for the design of future DMD trials with the 6-minute walk test as the endpoint. FUNDING PTC Therapeutics.


Orphanet Journal of Rare Diseases | 2011

Phenotypic variability of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation

Marianne Rohrbach; Anthony Vandersteen; Uluç Yiş; Gul Serdaroglu; Esra Ataman; Maya Chopra; Sixto Garcia; Kristi J. Jones; Ariana Kariminejad; Marius E. Kraenzlin; Carlo Marcelis; Matthias R. Baumgartner; Cecilia Giunta

BackgroundThe kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA) (OMIM 225400) is a rare inheritable connective tissue disorder characterized by a deficiency of collagen lysyl hydroxylase 1 (LH1; EC 1.14.11.4) due to mutations in PLOD1. Biochemically this results in underhydroxylation of collagen lysyl residues and, hence, an abnormal pattern of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline (HP) crosslinks excreted in the urine. Clinically the disorder is characterized by hypotonia and kyphoscoliosis at birth, joint hypermobility, and skin hyperelasticity and fragility. Severe hypotonia usually leads to delay in gross motor development, whereas cognitive development is reported to be normal.MethodsWe describe the clinical, biochemical and molecular characterisation, as well as electron microscopy findings of skin, in 15 patients newly diagnosed with this rare type of Ehlers-Danlos syndrome.ResultsAge at diagnosis ranged from 5 months to 27 years, with only 1/3 of the patients been diagnosed correctly in the first year of life. A similar disease frequency was found in females and males, however a broad disease severity spectrum (intra- and interfamilial), independent of molecular background or biochemical phenotype, was observed. Kyphoscoliosis, one of the main clinical features was not present at birth in 4 patients. Importantly we also noted the occurrence of vascular rupture antenatally and postnatally, as well as developmental delay in 5 patients.ConclusionIn view of these findings we propose that EDS VIA is a highly variable clinical entity, presenting with a broad clinical spectrum, which may also be associated with cognitive delay and an increased risk for vascular events. Genotype/phenotype association studies and additional molecular investigations in more extended EDS VIA populations will be necessary to further elucidate the cause of the variability of the disease severity.


Neuromuscular Disorders | 2003

Deficiency of the syntrophins and α-dystrobrevin in patients with inherited myopathy

Kristi J. Jones; Alison G. Compton; Nan Yang; M.A Mills; M.F Peters; David Mowat; Louis M. Kunkel; Stanley C. Froehner; Kathryn N. North

Abstract The syntrophins and dystrobrevins are members of the dystrophin-associated protein complex, and are thought to function as modular adaptors for signalling proteins recruited to the sarcolemmal membrane. We have characterised the expression of the syntrophins (α-, β1-, and β2-) and α-dystrobrevin by immunohistochemistry in normal human muscle and in biopsies from 162 patients with myopathies of unknown aetiology (with normal staining for dystrophin and other dystrophin-associated proteins). Unlike mice, β2-syntrophin is expressed at the sarcolemma in post-natal human skeletal muscle. Deficiency of α-dystrobrevin +/− β2-syntrophin was present in 16/162 (10%) patients, compared to age-matched controls. All patients presented with congenital-onset hypotonia and weakness, although there was variability in clinical severity. Two major clinical patterns emerged: patients with deficiency of β2-syntrophin and α-dystrobrevin presented with severe congenital weakness and died in the first year of life, and two patients with deficiency of α-dystrobrevin had congenital muscular dystrophy with complete external ophthalmoplegia. We have sequenced the coding regions of α-dystrobrevin and β2-syntrophin in these patients, and identified a new isoform of dystrobrevin, but have not identified any mutations. This suggests that disease causing mutations occur outside the coding region of these genes, in gene(s) encoding other components of the syntrophin–dystrobrevin subcomplex, or in gene(s) responsible for their post-translational modification and normal localisation.


Neurology | 2012

Importance and challenge of making an early diagnosis in LMNA-related muscular dystrophy

Manoj P. Menezes; Leigh B. Waddell; Frances J. Evesson; Sandra T. Cooper; Richard D. Webster; Kristi J. Jones; David Mowat; Matthew C. Kiernan; Heather M. Johnston; A. Corbett; M. Harbord; Kathryn N. North; Nigel F. Clarke

Objective: To identify the most useful clinical and histologic markers that facilitate early diagnosis in LMNA-related muscular dystrophy and to assess the usefulness of Western blotting (WB) for lamin A/C. Methods: We analyzed the clinical and histologic features and WB results of all patients with laminopathies diagnosed in a research-based diagnostic service over 8 years. Results: Although patients with congenital muscular dystrophy (MDCL) (n = 5) and Emery-Dreifuss muscular dystrophy (EDMD) (n = 5) had distinctive early clinical features, the lack of a suggestive clinical phenotype significantly delayed diagnosis in 2 of 3 patients with limb-girdle muscular dystrophy (LGMD) (n = 3). In addition, 6 of 20 muscle biopsy samples were considered nondystrophic, which contributed to delays in diagnosis in some patients. Neck extensor involvement (weakness or contractures) was the most consistent clinical sign, present in all patients. Reduced lamin A/C levels on WB were seen in 5 of 9 patients with laminopathies. Conclusion: Clinical features provide the best clues for diagnosing MDCL and EDMD early in the disease, and we urge clinicians to become familiar with those phenotypes. WB for lamin A/C may contribute to diagnosis but requires technical expertise, and results are normal in many individuals with LMNA mutations. Because of the survival benefit of early diagnosis and treatment, we recommend that LMNA gene sequencing be performed in all patients with undiagnosed congenital muscular dystrophy and neck extensor weakness, all patients with genetically undiagnosed LGMD, and those with suggestive clinical signs and nonspecific histologic abnormalities.


Neuromuscular Disorders | 2007

Variable penetrance of COL6A1 null mutations: implications for prenatal diagnosis and genetic counselling in Ullrich congenital muscular dystrophy families.

Rachel A. Peat; Naomi L. Baker; Kristi J. Jones; Kathryn N. North; Shireen R. Lamandé

Collagen VI mutations cause mild Bethlem myopathy and severe, progressive Ullrich congenital muscular dystrophy (UCMD). We identified a novel homozygous COL6A1 premature termination mutation in a UCMD patient that causes nonsense-mediated mRNA decay. Collagen VI microfibrils cannot be detected in muscle or fibroblasts. The parents are heterozygous carriers of the mutation and their fibroblasts produce reduced amounts of collagen VI. The molecular findings in the parents are analogous to those reported for a heterozygous COL6A1 premature termination mutation that causes Bethlem myopathy. However, the parents of our UCMD proband are clinically normal. The probands brother, also a carrier, has clinical features consistent with a mild collagen VI phenotype. Following a request for prenatal diagnosis in a subsequent pregnancy we found the fetus was a heterozygous carrier indicating that it would not be affected with severe UCMD. COL6A1 premature termination mutations exhibit variable penetrance necessitating a cautious approach to genetic counselling.


Journal of Paediatrics and Child Health | 1992

Immunization status of Casualty attenders: Risk factors for non-compliance and attitudes to ‘on the spot’ immunization

Kristi J. Jones; B. Fasher; R. M. Hanson; Margaret A Burgess; David Isaacs; P. Joshi; R. Blanch; J. Byrne

Abstract Outbreaks of vaccine preventable infections have focused attention on ‘missed opportunities’ for immunizing children. The immunization status of 520 consecutive children attending Casualty during a 10 day period was studied. Only 70% of children had received their diphtheria, tetanus, pertussis (DTP) and poliomyelitis immunization at the appropriate time, 13% had completed the schedule later than recommended and 17% had immunizations overdue by 4 weeks or more. For measles (mumps/rubella) vaccine (MM or MMR) 75% were up to date, 10% were given late and 15% were overdue.

Collaboration


Dive into the Kristi J. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Pestronk

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Mowat

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Leigh B. Waddell

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge