Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristi S. Anseth is active.

Publication


Featured researches published by Kristi S. Anseth.


Biotechnology and Bioengineering | 2009

Hydrogels as extracellular matrix mimics for 3D cell culture

Mark W. Tibbitt; Kristi S. Anseth

Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.


Science | 2009

Photodegradable hydrogels for dynamic tuning of physical and chemical properties

April M. Kloxin; Andrea M. Kasko; Chelsea N. Salinas; Kristi S. Anseth

We report a strategy to create photodegradable poly(ethylene glycol)–based hydrogels through rapid polymerization of cytocompatible macromers for remote manipulation of gel properties in situ. Postgelation control of the gel properties was demonstrated to introduce temporal changes, creation of arbitrarily shaped features, and on-demand pendant functionality release. Channels photodegraded within a hydrogel containing encapsulated cells allow cell migration. Temporal variation of the biochemical gel composition was used to influence chondrogenic differentiation of encapsulated stem cells. Photodegradable gels that allow real-time manipulation of material properties or chemistry provide dynamic environments with the scope to answer fundamental questions about material regulation of live cell function and may affect an array of applications from design of drug delivery vehicles to tissue engineering systems.


Biomaterials | 2002

Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering.

Jason A. Burdick; Kristi S. Anseth

Poly(ethylene glycol) (PEG) hydrogels were investigated as encapsulation matrices for osteoblasts to assess their applicability in promoting bone tissue engineering. Non-adhesive hydrogels were modified with adhesive Arg-Gly-Asp (RGD) peptide sequences to facilitate the adhesion, spreading, and, consequently, cytoskeletal organization of rat calvarial osteoblasts. When attached to hydrogel surfaces, the density and area of osteoblasts attached were dramatically different between modified and unmodified hydrogels. A concentration dependence of RGD groups was observed, with increased osteoblast attachment and spreading with higher RGD concentrations, and cytoskeleton organization was seen with only the highest peptide density. A majority of the osteoblasts survived the photoencapsulation process when gels were formed with 10% macromer, but a decrease in osteoblast viability of approximately 25% and 38% was seen after 1 day of in vitro culture when the macromer concentration was increased to 20 and 30wt%, respectively. There was no statistical difference in cell viability when peptides were added to the network. Finally, mineral deposits were seen in all hydrogels after 4 weeks of in vitro culture, but a significant increase in mineralization was observed upon introduction of adhesive peptides throughout the network.


Biomaterials | 1996

Mechanical properties of hydrogels and their experimental determination

Kristi S. Anseth; Christopher N. Bowman; Lisa Brannon-Peppas

SUMMARY ia The prediction and control of mechanical properties in hydrogels is of great importance in assessing the applicability of hydrogels. In this work we have shown that the mechanical properties are highly dependent on the polymer structure, especially the cross-linking density and the degree of swelling. Methods for measuring the elastic and viscoelastic properties of hydrogels were presented along with mechanisms for controlling the properties. Through variations in the polymer composition, the cross-linking density, and the polymerization conditions, it is remarkably facile to control the mechanical properties of hydrogels. REFERENCES 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 19 20 21 Aklonis JJ, MacKnight WJ. Introduction to Polymer Viscoelasficify. New York: Wiley-Interscience, 1983. Ward IM, Hadley PW. An Introduction to the Mechanical Properties of Solid Polymers. New York: Wiley,


Nature Materials | 2008

Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

Danielle S. W. Benoit; Michael P. Schwartz; Andrew R. Durney; Kristi S. Anseth

Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.


Nature Materials | 2009

Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments

Cole A. DeForest; Brian D. Polizzotti; Kristi S. Anseth

Click chemistry provides extremely selective and orthogonal reactions that proceed with high efficiency and under a variety of mild conditions, the most common example being the copper(I)-catalyzed reaction of azides with alkynes1,2. While the versatility of click reactions has been broadly exploited3–5, a major limitation is the intrinsic toxicity of the synthetic schemes and the inability to translate these approaches to biological applications. This manuscript introduces a robust synthetic strategy where macromolecular precursors react via a copper-free click chemistry6, allowing for the direct encapsulation of cells within click hydrogels for the first time. Subsequently, an orthogonal thiol-ene photocoupling chemistry is introduced that enables patterning of biological functionalities within the gel in real-time and with micron-scale resolution. This material system allows one to tailor independently the biophysical and biochemical properties of the cell culture microenvironments in situ. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gels with ideal structures that can be photopatterned and all in the presence of cells.


Pharmaceutical Research | 2009

PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine

Chien-Chi Lin; Kristi S. Anseth

Polyethylene glycol (PEG) hydrogels are widely used in a variety of biomedical applications, including matrices for controlled release of biomolecules and scaffolds for regenerative medicine. The design, fabrication, and characterization of PEG hydrogels rely on the understanding of fundamental gelation kinetics as well as the purpose of the application. This review article will focus on different polymerization mechanisms of PEG-based hydrogels and the importance of these biocompatible hydrogels in regenerative medicine applications. Furthermore, the design criteria that are important in maintaining the availability and stability of the biomolecules as well as the mechanisms for loading of biomolecules within PEG hydrogels will also be discussed. Finally, we overview and provide a perspective on some of the emerging novel design and applications of PEG hydrogel systems, including the spatiotemporal-controlled delivery of biomolecules, hybrid hydrogels, and PEG hydrogels designed for controlled stem cell differentiation.


Journal of Biomaterials Science-polymer Edition | 2000

Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro.

Stephanie J. Bryant; Charles R. Nuttelman; Kristi S. Anseth

This work investigates the cytocompatibility of several photoinitiating systems for potential cell encapsulation applications. Both UV and visible light initiating schemes were examined. The UV photoinitiators included 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651), 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), 2-methyl-1-[4-(methylthio) phenyl]-2-(4-morpholinyl)-1-propanone (Irgacure 907), and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (Darocur 2959). The visible light initiating systems included camphorquinone (CQ) with ethyl 4-N, N-dimethylaminobenzoate (4EDMAB) and triethanolamine (TEA) and the photosensitizer isopropyl thioxanthone. A cultured fibroblast cell line, NIH/3T3, was exposed to the photoinitiators at varying concentrations from 0.01% (w/w) to 0.1% (w/w) with and without the presence of initiating light. The results demonstrated that at low photoinitiator concentrations (6 0.01% (w/w)), all of the initiator molecules were cytocompatible with the exception of CQ, Irgacure 651, and 4EDMAB which had a relative survival ~ 50% lower than a control. In the presence of low intensity initiating light (~ 6 mW cm-2 of 365 nm UV light and ~ 60 mW cm-2 of 470-490 nm visible light) and initiating radicals, Darocur 2959 at concentrations 6 0.05% (w/w) and CQ at concentrations 6 0.01% (w/w) were the most promising cytocompatible UV and visible light initiating systems, respectively. To demonstrate the potential use of cytocompatible photoinitiating systems in cell encapsulation applications, chondrocytes were encapsulated in a photocrosslinked hydrogel using 0.05% (w/w) Darocur 2959 (cytocompatible) and 0.01% (w/w) Irgacure 651 (cyto-incompatible). After photopolymerizing for 10 minutes with ~ 8 mW cm-2 of 365 nm light, nearly all the chondrocytes survived the process with Darocur 2959 while very few of the chondrocytes survived the process with Irgacure 651.


Journal of Biomedical Materials Research | 2000

Photoencapsulation of chondrocytes in poly(ethylene oxide)‐based semi‐interpenetrating networks

Jennifer H. Elisseeff; Winnette McIntosh; Kristi S. Anseth; S. Riley; P. Ragan; Robert Langer

A photopolymerizing hydrogel system provides an efficient method to encapsulate cells. The present work describes the in vitro analysis of bovine and ovine chondrocytes encapsulated in a poly(ethylene oxide)-dimethacrylate and poly(ethylene glycol) semi-interpenetrating network using a photopolymerization process. One day after encapsulation, (3-[4,5-dimethylthiazol-2-y1]-2, 5-diphenyl-2H-tetrazolium bromide) (MTT) and light microscopy showed chondrocyte survival and a dispersed cell population composed of ovoid and elongated cells. Biochemical analysis demonstrated proteoglycan and collagen contents that increased over 2 weeks of static incubation. Cell content of the gels initially decreased and stabilized. Biomechanical analysis demonstrated the presence of a functional extracellular matrix with equilibrium moduli, dynamic stiffness, and streaming potentials that increased with time. These findings suggest the feasibility of photoencapsulation for tissue engineering and drug delivery purposes.


Journal of Controlled Release | 2002

In situ forming degradable networks and their application in tissue engineering and drug delivery

Kristi S. Anseth; Andrew T. Metters; Stephanie J. Bryant; Penny J. Martens; Jennifer H. Elisseeff; Christopher N. Bowman

Multifunctional macromers based on poly(ethylene glycol) and poly(vinyl alcohol) were photopolymerized to form degradable hydrogel networks. The degradation behavior of the highly swollen gels was characterized by monitoring changes in their mass loss, degree of swelling, and compressive modulus. Experimental results show that the modulus decreases exponentially with time, while the volumetric swelling ratio increases exponentially. A degradation mechanism assuming pseudo first-order hydrolysis kinetics and accounting for the structure of the crosslinked networks successfully predicted the experimentally observed trends in these properties with degradation. Once verified, the proposed degradation mechanism was extended to correlate network degradation kinetics, and subsequent changes in network structure, with release behavior of bioactive molecules from these dynamic systems. A theoretical model utilizing a statistical approach to predict the cleavage of crosslinks within the network was used to predict the complex erosion profiles produced by these hydrogels. Finally, the application of these macromers as in situ forming hydrogel constructs for cartilage tissue engineering is demonstrated.

Collaboration


Dive into the Kristi S. Anseth's collaboration.

Top Co-Authors

Avatar

Christopher N. Bowman

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Mark W. Tibbitt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason A. Burdick

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Stephanie J. Bryant

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Cole A. DeForest

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Leinwand

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Charles R. Nuttelman

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael P. Schwartz

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge