Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristiaan J. van der Gaag is active.

Publication


Featured researches published by Kristiaan J. van der Gaag.


American Journal of Human Genetics | 2007

Specific Sequence Variations within the 4q35 Region Are Associated with Facioscapulohumeral Muscular Dystrophy

Richard J.L.F. Lemmers; M. Wohlgemuth; Kristiaan J. van der Gaag; Patrick J. van der Vliet; Corrie M.M. van Teijlingen; Peter de Knijff; George W. Padberg; Rune R. Frants; Silvère M. van der Maarel

Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is mainly characterized by progressive wasting and weakness of the facial, shoulder, and upper-arm muscles. FSHD is caused by contraction of the macrosatellite repeat D4Z4 on chromosome 4q35. The D4Z4 repeat is very polymorphic in length, and D4Z4 rearrangements occur almost exclusively via intrachromosomal gene conversions. Several disease mechanisms have been proposed, but none of these models can comprehensively explain FSHD, because repeat contraction alone is not sufficient to cause disease. Almost-identical D4Z4-repeat arrays have been identified on chromosome 10q26 and on two equally common chromosome 4 variants, 4qA and 4qB. Yet only repeat contractions of D4Z4 on chromosome 4qA cause FSHD; contractions on the other chromosomes are nonpathogenic. We hypothesized that allele-specific sequence differences among 4qA, 4qB, and 10q alleles underlie the 4qA specificity of FSHD. Sequence variations between these alleles have been described before, but the extent and significance of these variations proximal to, within, and distal to D4Z4 have not been studied in detail. We examined additional sequence variations in the FSHD locus, including a relatively stable simple sequence-length polymorphism proximal to D4Z4, a single-nucleotide polymorphism (SNP) within D4Z4, and the A/B variation distal to D4Z4. On the basis of these polymorphisms, we demonstrate that the subtelomeric domain of chromosome 4q can be subdivided into nine distinct haplotypes, of which three carry the distal 4qA variation. Interestingly, we show that repeat contractions in two of the nine haplotypes, one of which is a 4qA haplotype, are not associated with FSHD. We also show that each of these haplotypes has its unique sequence signature, and we propose that specific SNPs in the disease haplotype are essential for the development of FSHD.


Annals of Human Genetics | 2010

Inferring Continental Ancestry of Argentineans from Autosomal, Y‐Chromosomal and Mitochondrial DNA

Daniel Corach; Oscar Lao; Cecilia Bobillo; Kristiaan J. van der Gaag; Sofia Zuniga; Mark Vermeulen; Kate van Duijn; Miriam Goedbloed; Peter M. Vallone; Walther Parson; Peter de Knijff; Manfred Kayser

We investigated the bio‐geographic ancestry of Argentineans, and quantified their genetic admixture, analyzing 246 unrelated male individuals from eight provinces of three Argentinean regions using ancestry‐sensitive DNA markers (ASDM) from autosomal, Y and mitochondrial chromosomes. Our results demonstrate that European, Native American and African ancestry components were detectable in the contemporary Argentineans, the amounts depending on the genetic system applied, exhibiting large inter‐individual heterogeneity. Argentineans carried a large fraction of European genetic heritage in their Y‐chromosomal (94.1%) and autosomal (78.5%) DNA, but their mitochondrial gene pool is mostly of Native American ancestry (53.7%); instead, African heritage was small in all three genetic systems (<4%). Population substructure in Argentina considering the eight sampled provinces was very small based on autosomal (0.92% of total variation was between provincial groups, p = 0.005) and mtDNA (1.77%, p = 0.005) data (none with NRY data), and all three genetic systems revealed no substructure when clustering the provinces into the three geographic regions to which they belong. The complex genetic ancestry picture detected in Argentineans underscores the need to apply ASDM from all three genetic systems to infer geographic origins and genetic admixture. This applies to all worldwide areas where people with different continental ancestry live geographically close together.


Molecular Biology and Evolution | 2010

A Worldwide Survey of Human Male Demographic History Based on Y-SNP and Y-STR Data from the HGDP–CEPH Populations

Wentao Shi; Qasim Ayub; Mark Vermeulen; Rong Guang Shao; Sofia Zuniga; Kristiaan J. van der Gaag; Peter de Knijff; Manfred Kayser; Yali Xue; Chris Tyler-Smith

We have investigated human male demographic history using 590 males from 51 populations in the Human Genome Diversity Project - Centre d’Étude du Polymorphisme Humain worldwide panel, typed with 37 Y-chromosomal Single Nucleotide Polymorphisms and 65 Y-chromosomal Short Tandem Repeats and analyzed with the program Bayesian Analysis of Trees With Internal Node Generation. The general patterns we observe show a gradient from the oldest population time to the most recent common ancestors (TMRCAs) and expansion times together with the largest effective population sizes in Africa, to the youngest times and smallest effective population sizes in the Americas. These parameters are significantly negatively correlated with distance from East Africa, and the patterns are consistent with most other studies of human variation and history. In contrast, growth rate showed a weaker correlation in the opposite direction. Y-lineage diversity and TMRCA also decrease with distance from East Africa, supporting a model of expansion with serial founder events starting from this source. A number of individual populations diverge from these general patterns, including previously documented examples such as recent expansions of the Yoruba in Africa, Basques in Europe, and Yakut in Northern Asia. However, some unexpected demographic histories were also found, including low growth rates in the Hazara and Kalash from Pakistan and recent expansion of the Mozabites in North Africa.


Forensic Science International-genetics | 2009

Improving global and regional resolution of male lineage differentiation by simple single-copy Y-chromosomal short tandem repeat polymorphisms

Mark Vermeulen; Andreas Wollstein; Kristiaan J. van der Gaag; Oscar Lao; Yali Xue; Qiuju Wang; Lutz Roewer; Hans Knoblauch; Chris Tyler-Smith; Peter de Knijff; Manfred Kayser

We analyzed 67 short tandem repeat polymorphisms from the non-recombining part of the Y-chromosome (Y-STRs), including 49 rarely studied simple single-copy (ss)Y-STRs and 18 widely used Y-STRs, in 590 males from 51 populations belonging to 8 worldwide regions (HGDP-CEPH panel). Although autosomal DNA profiling provided no evidence for close relationship, we found 18 Y-STR haplotypes (defined by 67 Y-STRs) that were shared by two to five men in 13 worldwide populations, revealing high and widespread levels of cryptic male relatedness. Maximal (95.9%) haplotype resolution was achieved with the best 25 out of 67 Y-STRs in the global dataset, and with the best 3-16 markers in regional datasets (89.6-100% resolution). From the 49 rarely studied ssY-STRs, the 25 most informative markers were sufficient to reach the highest possible male lineage differentiation in the global (92.2% resolution), and 3-15 markers in the regional datasets (85.4-100%). Considerably lower haplotype resolutions were obtained with the three commonly used Y-STR sets (Minimal Haplotype, PowerPlex Y, and AmpFlSTR Yfiler. Six ssY-STRs (DYS481, DYS533, DYS549, DYS570, DYS576 and DYS643) were most informative to supplement the existing Y-STR kits for increasing haplotype resolution, or - together with additional ssY-STRs - as a new set for maximizing male lineage differentiation. Mutation rates of the 49 ssY-STRs were estimated from 403 meiotic transfers in deep-rooted pedigrees, and ranged from approximately 4.8 x 10(-4) for 31 ssY-STRs with no mutations observed to 1.3 x 10(-2) and 1.5 x 10(-2) for DYS570 and DYS576, respectively, the latter representing the highest mutation rates reported for human Y-STRs so far. Our findings thus demonstrate that ssY-STRs are useful for maximizing global and regional resolution of male lineages, either as a new set, or when added to commonly used Y-STR sets, and support their application to forensic, genealogical and anthropological studies.


American Journal of Human Genetics | 2010

Worldwide Population Analysis of the 4q and 10q Subtelomeres Identifies Only Four Discrete Interchromosomal Sequence Transfers in Human Evolution

Richard J.L.F. Lemmers; Patrick J. van der Vliet; Kristiaan J. van der Gaag; Sofia Zuniga; Rune R. Frants; Peter de Knijff; Silvère M. van der Maarel

Subtelomeres are dynamic structures composed of blocks of homologous DNA sequences. These so-called duplicons are dispersed over many chromosome ends. We studied the human 4q and 10q subtelomeres, which contain the polymorphic macrosatellite repeat D4Z4 and which share high sequence similarity over a region of, on average, >200 kb. Sequence analysis of four polymorphic markers in the African, European, and Asian HAPMAP panels revealed 17 subtelomeric 4q and eight subtelomeric 10qter haplotypes. Haplotypes that are composed of a mixture of 4q and 10q sequences were detected at frequencies >10% in all three populations, seemingly supporting a mechanism of ongoing interchromosomal exchanges between these chromosomes. We constructed an evolutionary network of most haplotypes and identified the 4q haplotype ancestral to all 4q and 10q haplotypes. According to the network, all subtelomeres originate from only four discrete sequence-transfer events during human evolution, and haplotypes with mixtures of 4q- and 10q-specific sequences represent intermediate structures in the transition from 4q to 10q subtelomeres. Haplotype distribution studies on a large number of globally dispersed human DNA samples from the HGDP-CEPH panel supported our findings and show that all haplotypes were present before human migration out of Africa. D4Z4 repeat array contractions on the 4A161 haplotype cause Facioscapulohumeral muscular dystrophy (FSHD), whereas contractions on most other haplotypes are nonpathogenic. We propose that the limited occurrence of interchromosomal sequence transfers results in an accumulation of haplotype-specific polymorphisms that can explain the unique association of FSHD with D4Z4 contractions in a single 4q subtelomere.


Human Mutation | 2010

Evaluating self‐declared ancestry of U.S. Americans with autosomal, Y‐chromosomal and mitochondrial DNA

Oscar Lao; Peter M. Vallone; Michael D. Coble; Toni M. Diegoli; Mannis van Oven; Kristiaan J. van der Gaag; Jeroen Pijpe; Peter de Knijff; Manfred Kayser

The current U.S. population represents an amalgam of individuals originating mainly from four continental regions (Africa, Europe, Asia and America). To study the genetic ancestry and compare with self‐declared ancestry we have analyzed paternally, maternally and bi‐parentally inherited DNA markers sensitive for indicating continental genetic ancestry in all four major U.S. American groups. We found that self‐declared U.S. Hispanics and U.S. African Americans tend to show variable degrees of continental genetic admixture among the three genetic systems, with evidence for a marked sex‐biased admixture history. Moreover, for these two groups we observed significant regional variation across the country in genetic admixture. In contrast, self‐declared U.S. European and U.S. Asian Americans were genetically more homogeneous at the continental ancestry level. Two autosomal ancestry‐sensitive markers located in skin pigmentation candidate genes showed significant differences in self‐declared U.S. African Americans or U.S. European Americans, relative to their assumed parental populations from Africa or Europe. This provides genetic support for the importance of skin color in the complex process of ancestry identification.


Forensic Science International-genetics | 2016

Massively parallel sequencing of short tandem repeats—Population data and mixture analysis results for the PowerSeq™ system

Kristiaan J. van der Gaag; Rick H. de Leeuw; Jerry Hoogenboom; Jaynish Patel; Douglas R. Storts; Jeroen F. J. Laros; Peter de Knijff

Current forensic DNA analysis predominantly involves identification of human donors by analysis of short tandem repeats (STRs) using Capillary Electrophoresis (CE). Recent developments in Massively Parallel Sequencing (MPS) technologies offer new possibilities in analysis of STRs since they might overcome some of the limitations of CE analysis. In this study 17 STRs and Amelogenin were sequenced in high coverage using a prototype version of the Promega PowerSeq™ system for 297 population samples from the Netherlands, Nepal, Bhutan and Central African Pygmies. In addition, 45 two-person mixtures with different minor contributions down to 1% were analysed to investigate the performance of this system for mixed samples. Regarding fragment length, complete concordance between the MPS and CE-based data was found, marking the reliability of MPS PowerSeq™ system. As expected, MPS presented a broader allele range and higher power of discrimination and exclusion rate. The high coverage sequencing data were used to determine stutter characteristics for all loci and stutter ratios were compared to CE data. The separation of alleles with the same length but exhibiting different stutter ratios lowers the overall variation in stutter ratio and helps in differentiation of stutters from genuine alleles in mixed samples. All alleles of the minor contributors were detected in the sequence reads even for the 1% contributions, but analysis of mixtures below 5% without prior information of the mixture ratio is complicated by PCR and sequencing artefacts.


International Journal of Legal Medicine | 2012

Combining results of forensic STR kits: HDplex validation including allelic association and linkage testing with NGM and Identifiler loci

Antoinette A. Westen; Hinda Haned; Laurens J.W. Grol; Joyce Harteveld; Kristiaan J. van der Gaag; Peter de Knijff; Titia Sijen

The autosomal short tandem repeat (STR) kits that are currently used in forensic science have a high discrimination power. However, this discrimination power is sometimes not sufficient for complex kinship analyses or decreases when alleles are missing due to degradation of the DNA. The Investigator HDplex kit contains nine STRs that are additional to the commonly used forensic markers, and we validated this kit to assist human identification. With the increasing number of markers it becomes inevitable that forensic and kinship analyses include two or more STRs present on the same chromosome. To examine whether such markers can be regarded as independent, we evaluated the 30 STRs present in NGM, Identifiler and HDplex. Among these 30 markers, 17 syntenic STR pairs can be formed. Allelic association between these pairs was examined using 335 Dutch reference samples and no linkage disequilibrium was detected, which makes it possible to use the product rule for profile probability calculations in unrelated individuals. Linkage between syntenic STRs was studied by determining the recombination fraction between them in five three-generation CEPH families. The recombination fractions were compared to the physical and genetic distances between the markers. For most types of pedigrees, the kinship analyses can be performed using the product rule, and for those cases that require an alternative calculation method (Gill et al., Forensic Sci Int Genet 6:477–486, 2011), the recombination fractions as determined in this study can be used. Finally, we calculated the (combined) match probabilities, for the supplementary genotyping results of HDplex, NGM and Identifiler.


PLOS ONE | 2014

The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands

József Geml; Barbara Gravendeel; Kristiaan J. van der Gaag; Manon Neilen; Youri Lammers; Niels Raes; Tatiana A. Semenova; Peter de Knijff; Machiel E. Noordeloos

Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought.


Bioinformatics | 2014

TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes

Seyed Yahya Anvar; Kristiaan J. van der Gaag; Jaap van der Heijden; Marcel H. A. M. Veltrop; Rolf H. A. M. Vossen; Rick H. de Leeuw; Cor Breukel; Henk P. J. Buermans; J. Sjef Verbeek; Peter de Knijff; Johan T. den Dunnen; Jeroen F. J. Laros

MOTIVATION Advances in sequencing technologies and computational algorithms have enabled the study of genomic variants to dissect their functional consequence. Despite this unprecedented progress, current tools fail to reliably detect and characterize more complex allelic variants, such as short tandem repeats (STRs). We developed TSSV as an efficient and sensitive tool to specifically profile all allelic variants present in targeted loci. Based on its design, requiring only two short flanking sequences, TSSV can work without the use of a complete reference sequence to reliably profile highly polymorphic, repetitive or uncharacterized regions. RESULTS We show that TSSV can accurately determine allelic STR structures in mixtures with 10% representation of minor alleles or complex mixtures in which a single STR allele is shared. Furthermore, we show the universal utility of TSSV in two other independent studies: characterizing de novo mutations introduced by transcription activator-like effector nucleases (TALENs) and profiling the noise and systematic errors in an IonTorrent sequencing experiment. TSSV complements the existing tools by aiding the study of highly polymorphic and complex regions and provides a high-resolution map that can be used in a wide range of applications, from personal genomics to forensic analysis and clinical diagnostics. AVAILABILITY AND IMPLEMENTATION We have implemented TSSV as a Python package that can be installed through the command-line using pip install TSSV command. Its source code and documentation are available at https://pypi.python.org/pypi/tssv and http://www.lgtc.nl/tssv.

Collaboration


Dive into the Kristiaan J. van der Gaag's collaboration.

Top Co-Authors

Avatar

Peter de Knijff

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Titia Sijen

Netherlands Forensic Institute

View shared research outputs
Top Co-Authors

Avatar

Antoinette A. Westen

Netherlands Forensic Institute

View shared research outputs
Top Co-Authors

Avatar

Sofia Zuniga

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Pijpe

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rick H. de Leeuw

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurens J.W. Grol

Netherlands Forensic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge