Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristiaan Temst is active.

Publication


Featured researches published by Kristiaan Temst.


Plant Physiology | 2008

Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography

Pieter Verboven; Greet Kerckhofs; Hibru Kelemu Mebatsion; Quang Tri Ho; Kristiaan Temst; Martine Wevers; Peter Cloetens; Bart Nicolai

Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.


Angewandte Chemie | 2011

Selective Removal of N‐Heterocyclic Aromatic Contaminants from Fuels by Lewis Acidic Metal–Organic Frameworks

Michael Maes; Maarten Trekels; Mohammed Boulhout; Stijn Schouteden; Frederik Vermoortele; Luc Alaerts; Daniela Heurtaux; You-Kyong Seo; Young Kyu Hwang; Jong-San Chang; Isabelle Beurroies; Renaud Denoyel; Kristiaan Temst; André Vantomme; Patricia Horcajada; Christian Serre; Dirk E. De Vos

Fossil fuels, such as diesel or gasoline, are blends of aromatic and aliphatic compounds that contain significant levels of heterocyclic aromatic contaminants. These contaminants have to be removed for environmental reasons. One of the most important issues is the presence of sulfur compounds, such as thiophene (TPH), benzothiophene (BT), and dibenzothiophene (DBT) in fuel feeds, which lead to the formation of SOx exhaust gases and eventually to acid rain. As environmental legislation becomes more stringent on SOx exhaust levels, it is imperative to keep lowering the sulfur concentrations to currently 10 ppmw S (parts per million by weight of sulfur) or less. The main industrial process is hydrodesulfurization (HDS) in which sulfur compounds are hydrogenated to hydrocarbons and H2S over typically a CoMo catalyst. However, nitrogen compounds, such as (substituted) indoles and carbazoles, which are also present in fossil fuels, compete for the active sites on these HDS catalysts, preventing a deep HDS. In the absence of nitrogen compounds, deep HDS can easily produce fuels with sulfur levels well below 10 ppmw, for instance by using the newest generations of materials based on Mo-W-Ni, which can lower sulfur levels to 5 ppmw. As the eventual aim is to have sulfur-free fuel, even these low concentrations will have to be removed. A promising way to selectively remove nitrogen contaminants would be adsorption on a microporous material. Efficient purification can be performed by adsorption as long as the interaction between the adsorbate and the adsorbent is relatively strong. A CuY zeolite has been described as a potential adsorbent for the removal of nitrogen compounds by p complexation, but the maximal capacity at saturation only amounted to 3 mg N per gram of adsorbent, and moreover sulfur compounds are adsorbed as well. An ideal adsorbent for such application should be easy to synthesize, stable in the given feed compositions, possess pores that are large enough to accommodate bulky organic molecules, such as carbazoles, have a sufficient capacity, and be highly selective for nitrogen over sulfur compounds. Metal–organic frameworks (MOFs) are an emerging class of highly porous materials, formed of inorganic subunits and organic linkers that bear multiple complexing functions (for example, carboxylates, phosphonates, and others), which enables a unique variety of potential interactions inside the pores. To date, they have been successfully used as adsorbents for the capture of greenhouse gases, such as CO2 and CH4, and in liquid-phase separations such as those of alkylaromatics and styrene, olefins and paraffins, and for fuel and water purification by adsorption of organic pollutants. Herein, we propose the use of mesoporous metal carboxylates with different topologies and compositions for the selective adsorption of nitrogen contaminants. These heterocyclic contaminants are found in fuel feeds that are typically aliphatic with a minor aromatic fraction. This system is simulated herein by using a solvent composed of heptane/toluene in a volumetric ratio of 80:20 (labeled hereafter as H/T). Specifically, the adsorptive removal of indole (IND), 2-methylindole (2MI), 1,2-dimethylindole (1,2DMI), carbazole (CBZ), and N-methylcarbazole (NMC) as well as of TPH, BT, and DBT has been studied. These molecules are the most important heterocyclic contaminants in fuel feeds. To study the influence of the toluenecontaining solvent on the adsorption and on the interaction strength between the host and the adsorbate, the adsorption of the contaminants has also been studied using a toluene/ [*] M. Maes, S. Schouteden, F. Vermoortele, Dr. L. Alaerts, Prof. Dr. D. E. De Vos Centre for Surface Chemistry and Catalysis Katholieke Universiteit Leuven Kasteelpark Arenberg 23, 3001 Leuven (Belgium) Fax: (+ 32)16-321-998 E-mail: [email protected]


Journal of Applied Physics | 2005

Magnetization reversal in patterned ferromagnetic and exchange-biased nanostructures studied by neutron reflectivity (invited)

Kristiaan Temst; E. Popova; M. J. Van Bael; H. Loosvelt; Johan Swerts; D. Buntinx; Y. Bruynseraede; H. Fritzsche; M. Gierlings; L.H.A. Leunissen; R. Jonckheere

We have measured the off-specular polarized neutron reflectivity of periodic arrays of micron-sized rectangular polycrystalline ferromagnetic Co bars and exchange-biased Co∕CoO bars, which were prepared by a combination of electron-beam lithography and evaporation techniques. The intensity of the first-order off-specular neutron satellite reflection was monitored as function of the magnetic field parallel to the long edge of the bars, allowing analysis of the magnetization reversal process using the four spin-polarized scattering cross sections. The neutron data are compared with calculations based on a micromagnetic simulation. The influence of shape anisotropy on the reversal mechanism is demonstrated.


Physical Review B | 1999

MAGNETIC PROPERTIES OF SUBMICRON CO ISLANDS AND THEIR USE AS ARTIFICIAL PINNING CENTERS

M. J. Van Bael; Kristiaan Temst; Victor Moshchalkov; Y. Bruynseraede

We report on the magnetic properties of elongated submicron magnetic islands and their influence on a superconducting film. The magnetic properties were studied by magnetization hysteresis loop measurements and scanning-force microscopy. In the as-grown state, the islands have a magnetic structure consisting of two antiparallel domains. This stable domain configuration has been directly visualized as a


Applied Physics Letters | 2005

Critical size for exchange bias in ferromagnetic-antiferromagnetic particles

An Dobrynin; D. N. Ievlev; Kristiaan Temst; Peter Lievens; Jérémie Margueritat; J. Gonzalo; Carmen N. Afonso; Sq Zhou; André Vantomme; E Piscopiello; G. Van Tendeloo

2\ifmmode\times\else\texttimes\fi{}2


Physical Review Letters | 2005

Reversing the Training Effect in Exchange Biased CoO/Co Bilayers

Steven Brems; D. Buntinx; Kristiaan Temst; Chris Van Haesendonck; F. Radu; H. Zabel

-checkerboard pattern by magnetic-force microscopy. In the remanent state, after magnetic saturation along the easy axis, all islands have a single-domain structure with the magnetic moment oriented along the magnetizing field direction. Periodic lattices of these Co islands act as efficient artificial pinning arrays for the flux lines in a superconducting Pb film deposited on top of the Co islands. The influence of the magnetic state of the dots on their pinning efficiency is investigated in these films, before and after the Co dots are magnetized.


Journal of Physics D | 2014

Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling

M. Lorenz; Vera Lazenka; Peter Schwinkendorf; Francis Bern; M. Ziese; Hiwa Modarresi; A. Volodin; Margriet Van Bael; Kristiaan Temst; André Vantomme; Marius Grundmann

We present a study of the magnetic properties of oxidized Co nanoparticles with an average grain size of 3nm, embedded in an amorphous Al2O3 matrix. These nanoparticles can be considered as imperfect Co-core CoO-shell systems. Magnetization measurements after magnetic field cooling show a vertical shift of the hysteresis loop, while no exchange bias is observed. With a simple model, we show that there is a critical grain size for hybrid ferromagnetic-antiferromagnetic particles, below which exchange bias is absent for any ratio of ferromagnetic and antiferromagnetic constituents. The reason is that the interfacial exchange energy dominates over other energies in the system due to a large surface-to-volume ratio in the nanoparticles.


Physical Review B | 1999

Shapiro steps in a superconducting film with an antidot lattice

L. Van Look; Erik Rosseel; M. J. Van Bael; Kristiaan Temst; Victor Moshchalkov; Y. Bruynseraede

We performed a detailed study of the training effect in exchange biased CoO/Co bilayers. High-resolution measurements of the anisotropic magnetoresistance (AMR) display an asymmetry in the first magnetization reversal process and training in the subsequent reversal processes. Surprisingly, the AMR measurements as well as magnetization measurements reveal that it is possible to partially reinduce the untrained state by performing a hysteresis measurement with an in-plane external field perpendicular to the cooling field. Indeed, the next hysteresis loop obtained in a field parallel to the cooling field resembles the initial asymmetric hysteresis loop, but with a reduced amount of spin rotation occurring at the first coercive field. This implies that the antiferromagnetic domains, which are created during the first reversal after cooling, can be partially erased.


international electron devices meeting | 2009

Enabling the high-performance InGaAs/Ge CMOS: a common gate stack solution

Dennis Lin; Guy Brammertz; Sonja Sioncke; Claudia Fleischmann; Annelies Delabie; Koen Martens; Hugo Bender; Thierry Conard; W. H. Tseng; Jeng-Shyan Lin; Wei-E Wang; Kristiaan Temst; A. Vatomme; Jerome Mitard; Matty Caymax; Marc Meuris; Marc Heyns; T. Hoffmann

BiFeO3 and BaTiO3 were used to grow homogeneous composite thin films and multilayer heterostructures with 15 double layers by pulsed laser deposition. The perpendicular strain of the films was tuned by employing different substrate materials, i.e. SrTiO3(0 0 1), MgO(0 0 1) and MgAl2O4(0 0 1). Multiferroic properties have been measured in a temperature range from room temperature down to 2 K. The composite films show a high ferroelectric saturation polarization of more than 70 µ Cc m −2 . The multilayers show the highest magnetization of 2.3 emu cm −3 , due to interface magnetic moments and exchange coupling of the included weak ferromagnetic phases. The magnetoelectric coupling of the BaTiO3–BiFeO3 films was investigated by two methods. While the ferroelectric hysteresis loops in magnetic fields up to 8 T show only minor changes, a direct longitudinal AC method yields a magnetoelectric coefficient αME = ∂E/∂H of 20.75 V cm −1 Oe −1 with a low µ0HDC of 0.25 T for the 67% BaTiO3–33% BiFeO3 composite film at 300 K. This value is close to the highest reported in the literature.


Applied Physics Letters | 1997

Thin film growth of semiconducting Mg2Si by codeposition

André Vantomme; John E. Mahan; Guido Langouche; James Becker; Margriet Van Bael; Kristiaan Temst; Chris Van Haesendonck

Shapiro voltage steps at voltages V_n=nV_0 (n integer) have been observed in the voltage-current characteristics of a superconducting film with a square lattice of perforating microholes (antidots)in the presence of radiofrequent radiation. These equidistant steps appear at the second matching field H_2 when the flow of the interstitial vortex lattice in the periodic potential created by the antidots and the vortices trapped by them, is in phase with the applied rf frequency. Therefore, the observation of Shapiro steps clearly reveals the presence of mobile intersitial vortices in superconducting films with regular pinning arrays. The interstitial vortices, moved by the driving current, coexist with immobile vortices strongly pinned at the antidots.

Collaboration


Dive into the Kristiaan Temst's collaboration.

Top Co-Authors

Avatar

André Vantomme

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Y. Bruynseraede

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

M. J. Van Bael

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Victor Moshchalkov

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Margriet Van Bael

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yvan Bruynseraede

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

M. Baert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Erik Rosseel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Johan Swerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Chris Van Haesendonck

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge