Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian B. Axelsen is active.

Publication


Featured researches published by Kristian B. Axelsen.


Journal of Molecular Evolution | 1998

Evolution of substrate specificities in the P-type ATPase superfamily

Kristian B. Axelsen; Michael G. Palmgren

Abstract. P-type ATPases make up a large superfamily of ATP-driven pumps involved in the transmembrane transport of charged substrates. We have performed an analysis of conserved core sequences in 159 P-type ATPases. The various ATPases group together in five major branches according to substrate specificity, and not according to the evolutionary relationship of the parental species, indicating that invention of new substrate specificities is accompanied by abrupt changes in the rate of sequence evolution. A hitherto-unrecognized family of P-type ATPases has been identified that is expected to be represented in all the major phyla of eukarya.


Plant Physiology | 2003

Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice

Ivan Baxter; Jason Tchieu; Michael R. Sussman; Marc Boutry; Michael G. Palmgren; Michael Gribskov; Jeffrey F. Harper; Kristian B. Axelsen

Members of the P-type ATPase ion pump superfamily are found in all three branches of life. Forty-six P-type ATPase genes were identified in Arabidopsis, the largest number yet identified in any organism. The recent completion of two draft sequences of the rice (Oryza sativa) genome allows for comparison of the full complement of P-type ATPases in two different plant species. Here, we identify a similar number (43) in rice, despite the rice genome being more than three times the size of Arabidopsis. The similarly large families suggest that both dicots and monocots have evolved with a large preexisting repertoire of P-type ATPases. Both Arabidopsis and rice have representative members in all five major subfamilies of P-type ATPases: heavy-metal ATPases (P1B), Ca2+-ATPases (endoplasmic reticulum-type Ca2+-ATPase and autoinhibited Ca2+-ATPase, P2A and P2B), H+-ATPases (autoinhibited H+-ATPase, P3A), putative aminophospholipid ATPases (ALA, P4), and a branch with unknown specificity (P5). The close pairing of similar isoforms in rice and Arabidopsis suggests potential orthologous relationships for all 43 rice P-type ATPases. A phylogenetic comparison of protein sequences and intron positions indicates that the common angiosperm ancestor had at least 23 P-type ATPases. Although little is known about unique and common features of related pumps, clear differences between some members of the calcium pumps indicate that evolutionarily conserved clusters may distinguish pumps with either different subcellular locations or biochemical functions.


Nucleic Acids Research | 2012

The UniProt-GO Annotation database in 2011

Emily Dimmer; Rachael P. Huntley; Yasmin Alam-Faruque; Tony Sawford; Claire O'Donovan; María Martín; Benoit Bely; Paul Browne; Wei Mun Chan; Ruth Eberhardt; Michael Gardner; Kati Laiho; D Legge; Michele Magrane; Klemens Pichler; Diego Poggioli; Harminder Sehra; Andrea H. Auchincloss; Kristian B. Axelsen; Marie-Claude Blatter; Emmanuel Boutet; Silvia Braconi-Quintaje; Lionel Breuza; Alan Bridge; Elizabeth Coudert; Anne Estreicher; L Famiglietti; Serenella Ferro-Rojas; Marc Feuermann; Arnaud Gos

The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.


Biochimica et Biophysica Acta | 2000

Molecular aspects of higher plant P-type Ca2+-ATPases

Markus Geisler; Kristian B. Axelsen; Jeffrey F. Harper; Michael G. Palmgren

Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type Ca(2+)-ATPase) and type IIB (ACA for autoinhibited Ca(2+)-ATPase). While plant IIB calcium pumps characterized so far are localized to internal membranes, their animal homologues are exclusively found in the plasma membrane. However, Arabidopsis type IIB calcium pump isoforms ACA8, ACA9 and ACA10 form a separate outgroup and, based on the high molecular masses of the encoded proteins, are good candidates for plasma membrane bound Ca(2+)-ATPases. All known plant type IIB calcium ATPases seem to employ an N-terminal calmodulin-binding autoinhibitor. Therefore it appears that the activity of type IIB Ca(2+)-ATPases in plants and animals is controlled by N-terminal and C-terminal autoinhibitory domains, respectively. Possible functions of plant calcium pumps are described and - beside second messenger functions directly linked to calcium homeostasis - new data on a putative involvement in secretory and salt stress functions are discussed.


The Plant Cell | 2000

Chilling Tolerance in Arabidopsis Involves ALA1, a Member of a New Family of Putative Aminophospholipid Translocases

Eric Gomès; Mia Kyed Jakobsen; Kristian B. Axelsen; Markus Geisler; Michael G. Palmgren

The lipid composition of membranes is a key determinant for cold tolerance, and enzymes that modify membrane structure seem to be important for low-temperature acclimation. We have characterized ALA1 (for aminophospholipid ATPase1), a novel P-type ATPase in Arabidopsis that belongs to the gene family ALA1 to ALA11. The deduced amino acid sequence of ALA1 is homologous with those of yeast DRS2 and bovine ATPase II, both of which are putative aminophospholipid translocases. ALA1 complements the deficiency in phosphatidylserine internalization into intact cells that is exhibited by the drs2 yeast mutant, and expression of ALA1 results in increased translocation of aminophospholipids in reconstituted yeast membrane vesicles. These lines of evidence suggest that ALA1 is involved in generating membrane lipid asymmetry and probably encodes an aminophospholipid translocase. ALA1 complements the cold sensitivity of the drs2 yeast mutant. Downregulation of ALA1 in Arabidopsis results in cold-affected plants that are much smaller than those of the wild type. These data suggest a link between regulation of transmembrane bilayer lipid asymmetry and the adaptation of plants to cold.


Nucleic Acids Research | 2004

IntEnz, the integrated relational enzyme database

Astrid Fleischmann; Michael Darsow; Kirill Degtyarenko; Wolfgang Fleischmann; Sinéad Boyce; Kristian B. Axelsen; Amos Marc Bairoch; Dietmar Schomburg; Keith F. Tipton; Rolf Apweiler

IntEnz is the name for the Integrated relational Enzyme database and is the official version of the Enzyme Nomenclature. The Enzyme Nomenclature comprises recommendations of the Nomenclature Committee of the International Union of Bio chemistry and Molecular Biology (NC-IUBMB) on the nomenclature and classification of enzyme-catalysed reactions. IntEnz is supported by NC-IUBMB and contains enzyme data curated and approved by this committee. The database IntEnz is available at http://www.ebi.ac.uk/intenz.


Journal of Biological Chemistry | 2001

CYP83B1 Is the Oxime-metabolizing Enzyme in the Glucosinolate Pathway in Arabidopsis

Carsten Hørslev Hansen; Liangcheng Du; Peter Naur; Carl Erik Olsen; Kristian B. Axelsen; Alastair J. Hick; John Anthony Pickett; Barbara Ann Halkier

CYP83B1 from Arabidopsis thaliana has been identified as the oxime-metabolizing enzyme in the biosynthetic pathway of glucosinolates. Biosynthetically active microsomes isolated from Sinapis alba convertedp-hydroxyphenylacetaldoxime and cysteine intoS-alkylatedp-hydroxyphenylacetothiohydroximate,S-(p-hydroxyphenylacetohydroximoyl)-l-cysteine, the next proposed intermediate in the glucosinolate pathway. The production was shown to be dependent on a cytochrome P450 monooxygenase. We searched the genome of A. thaliana for homologues of CYP71E1 (P450ox), the only known oxime-metabolizing enzyme in the biosynthetic pathway of the evolutionarily related cyanogenic glucosides. By a combined use of bioinformatics, published expression data, and knock-out phenotypes, we identified the cytochrome P450 CYP83B1 as the oxime-metabolizing enzyme in the glucosinolate pathway as evidenced by characterization of the recombinant protein expressed in Escherichia coli. The data are consistent with the hypothesis that the oxime-metabolizing enzyme in the cyanogenic pathway (P450ox) was mutated into a “P450mox” that converted oximes into toxic compounds that the plant detoxified into glucosinolates.


Nucleic Acids Research | 2012

UniPathway: a resource for the exploration and annotation of metabolic pathways

Anne Morgat; Eric Coissac; Elisabeth Coudert; Kristian B. Axelsen; Guillaume Keller; Amos Marc Bairoch; Alan Bridge; Lydie Bougueleret; Ioannis Xenarios; Alain Viari

UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.


Frontiers in Plant Science | 2012

Evolution of Plant P-Type ATPases

Christian N. S. Pedersen; Kristian B. Axelsen; Jeffrey F. Harper; Michael G. Palmgren

Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na+ and H+ pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na+ pumps (P2C and P2D ATPases) as well as a primitive H+-ATPase. Both Na+ and H+ pumps also co-exist in the moss P. patens, which has a P2D Na+-ATPase. In contrast to the primitive H+-ATPases in chlorophytes and P. patens, the H+-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H+ pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.


Nucleic Acids Research | 2012

Rhea—a manually curated resource of biochemical reactions

Rafael Alcántara; Kristian B. Axelsen; Anne Morgat; Eugeni Belda; Elisabeth Coudert; Alan Bridge; Hong Cao; Paula de Matos; Marcus Ennis; Steve Turner; Gareth Owen; Lydie Bougueleret; Ioannis Xenarios; Christoph Steinbeck

Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and models.

Collaboration


Dive into the Kristian B. Axelsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Bridge

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Coudert

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Anne Morgat

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Lydie Bougueleret

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Lucila Aimo

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Nevila Hyka-Nouspikel

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Nicole Redaschi

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Thierry Lombardot

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge