Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian Helin is active.

Publication


Featured researches published by Kristian Helin.


Nature | 2007

UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development

Karl Agger; Paul Cloos; Jesper Christensen; Diego Pasini; Simon Rose; Juri Rappsilber; Irina Issaeva; Eli Canaani; Anna Elisabetta Salcini; Kristian Helin

The trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells. The rapid decrease of the H3K27me3 mark during specific stages of embryogenesis and stem-cell differentiation indicates that histone demethylases specific for H3K27me3 may exist. Here we show that the human JmjC-domain-containing proteins UTX and JMJD3 demethylate tri-methylated Lys 27 on histone H3. Furthermore, we demonstrate that ectopic expression of JMJD3 leads to a strong decrease of H3K27me3 levels and causes delocalization of polycomb proteins in vivo. Consistent with the strong decrease in H3K27me3 levels associated with HOX genes during differentiation, we show that UTX directly binds to the HOXB1 locus and is required for its activation. Finally mutation of F18E9.5, a Caenorhabditis elegans JMJD3 orthologue, or inhibition of its expression, results in abnormal gonad development. Taken together, these results suggest that H3K27me3 demethylation regulated by UTX/JMJD3 proteins is essential for proper development. Moreover, the recent demonstration that UTX associates with the H3K4me3 histone methyltransferase MLL2 (ref. 8) supports a model in which the coordinated removal of repressive marks, polycomb group displacement, and deposition of activating marks are important for the stringent regulation of transcription during cellular differentiation.


The EMBO Journal | 2003

EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer

Adrian P. Bracken; Diego Pasini; Maria Capra; Elena Prosperini; Elena Colli; Kristian Helin

Recent experiments have demonstrated that the Polycomb group (PcG) gene EZH2 is highly expressed in metastatic prostate cancer and in lymphomas. EZH2 is a component of the PRC2 histone methyltransferase complex, which also contains EED and SUZ12 and is required for the silencing of HOX gene expression during embryonic development. Here we demonstrate that both EZH2 and EED are essential for the proliferation of both transformed and non‐transformed human cells. In addition, the pRB‐E2F pathway tightly regulates their expression and, consistent with this, we find that EZH2 is highly expressed in a large set of human tumors. These results raise the question whether EZH2 is a marker of proliferation or if it is actually contributing to tumor formation. Significantly, we propose that EZH2 is a bona fide oncogene, since we find that ectopic expression of EZH2 is capable of providing a proliferative advantage to primary cells and, in addition, its gene locus is specifically amplified in several primary tumors.


Nature | 2011

TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity

Kristine Williams; Jesper Christensen; Marianne Terndrup Pedersen; Jens Vilstrup Johansen; Paul Cloos; Juri Rappsilber; Kristian Helin

Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation of DNA methylation fidelity.


The EMBO Journal | 2004

Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

Diego Pasini; Adrian P. Bracken; Michael Rugaard Jensen; Eros Lazzerini Denchi; Kristian Helin

SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show that mice lacking Suz12, like Ezh2 and Eed mutant mice, are not viable and die during early postimplantation stages displaying severe developmental and proliferative defects. Consistent with this, we demonstrate that SUZ12 is required for proliferation of cells in tissue culture. Furthermore, we demonstrate that SUZ12 is essential for the activity and stability of the PRC2/3 complexes in mouse embryos, in tissue culture cells and in vitro. Strikingly, Suz12‐deficient embryos show a specific loss of di‐ and trimethylated H3K27, demonstrating that Suz12 is indeed essential for EZH2 activity in vivo. In conclusion, our data demonstrate an essential role of SUZ12 in regulating the activity of the PRC2/3 complexes, which are required for regulating proliferation and embryogenesis.


Nature | 2006

The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3

Paul Cloos; Jesper Christensen; Karl Agger; Alessio Maiolica; Juri Rappsilber; Torben Antal; Klaus Hansen; Kristian Helin

Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation and transcriptional repression in a variety of species. H3K9me3 has long been regarded as a ‘permanent’ epigenetic mark. In a search for proteins and complexes interacting with H3K9me3, we identified the protein GASC1 (gene amplified in squamous cell carcinoma 1), which belongs to the JMJD2 (jumonji domain containing 2) subfamily of the jumonji family, and is also known as JMJD2C. Here we show that three members of this subfamily of proteins demethylate H3K9me3/me2 in vitro through a hydroxylation reaction requiring iron and α-ketoglutarate as cofactors. Furthermore, we demonstrate that ectopic expression of GASC1 or other JMJD2 members markedly decreases H3K9me3/me2 levels, increases H3K9me1 levels, delocalizes HP1 and reduces heterochromatin in vivo. Previously, GASC1 was found to be amplified in several cell lines derived from oesophageal squamous carcinomas, and in agreement with a contribution of GASC1 to tumour development, inhibition of GASC1 expression decreases cell proliferation. Thus, in addition to identifying GASC1 as a histone trimethyl demethylase, we suggest a model for how this enzyme might be involved in cancer development, and propose it as a target for anti-cancer therapy.


Nature Cell Biology | 2001

Apaf-1 is a transcriptional target for E2F and p53

M. Cristina Moroni; Emma S. Hickman; Eros Lazzerini Denchi; Greta Caprara; Elena Colli; Francesco Cecconi; Heiko Müller; Kristian Helin

Loss of function of the retinoblastoma protein, pRB, leads to lack of differentiation, hyperproliferation and apoptosis. Inactivation of pRB results in deregulated E2F activity, which in turn induces entry to S-phase and apoptosis. Induction of apoptosis by either the loss of pRB or the deregulation of E2F activity occurs via both p53-dependent and p53-independent mechanisms. The mechanism by which E2F induces apoptosis is still unclear. Here we show that E2F1 directly regulates the expression of Apaf-1, the gene for apoptosis protease-activating factor 1. These results provide a direct link between the deregulation of the pRB pathway and apoptosis. Furthermore, because the pRB pathway is functionally inactivated in most cancers, the identification of Apaf-1 as a transcriptional target for E2F might explain the increased sensitivity of tumour cells to chemotherapy. We also show that, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels.


Cell | 1992

A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

Kristian Helin; Jacqueline A. Lees; Marc Vidal; Nicholas J. Dyson; Ed Harlow; Ali Fattaey

The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3, was identified by the ability of its gene product to interact with pRB. RBP3 bound to pRB both in vitro and in vivo, and this binding was competed by viral proteins known to disrupt pRB-E2F association. RBP3 bound to E2F recognition sequences in a sequence-specific manner. Furthermore, transient expression of RBP3 caused a 10-fold transactivation of the adenovirus E2 promoter, and this transactivation was dependent on the E2F recognition sequences. These properties suggest that RBP3 encodes E2F, or an E2F-like protein.


Nature Cell Biology | 2008

A model for transmission of the H3K27me3 epigenetic mark

Klaus Hansen; Adrian P. Bracken; Diego Pasini; Nikolaj Dietrich; Simmi S. Gehani; Astrid Monrad; Juri Rappsilber; Mads Lerdrup; Kristian Helin

Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division. Here we provide a model to explain how trimethylated Lys 27 of histone 3 (H3K27me3), which is catalysed by the EZH2-containing Polycomb Repressive Complex 2 (PRC2), is maintained in proliferating cells. We show that the PRC2 complex binds to the H3K27me3 mark and colocalizes with this mark in G1 phase and with sites of ongoing DNA replication. Efficient binding requires an intact trimeric PRC2 complex containing EZH2, EED and SUZ12, but is independent of the catalytic SET domain of EZH2. Using a heterologous reporter system, we show that transient recruitment of the PRC2 complex to chromatin, upstream of the transcriptional start site, is sufficient to maintain repression through endogenous PRC2 during subsequent cell divisions. Thus, we suggest that once the H3K27me3 is established, it recruits the PRC2 complex to maintain the mark at sites of DNA replication, leading to methylation of H3K27 on the daughter strands during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure and transcriptional programs.


Molecular and Cellular Biology | 2007

The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation

Diego Pasini; Adrian P. Bracken; Jacob B. Hansen; Manuela Capillo; Kristian Helin

ABSTRACT Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos. Here, we demonstrate that Suz12−/− mouse embryonic stem (ES) cells can be established and expanded in tissue culture. The Suz12−/− ES cells are characterized by global loss of H3K27 trimethylation (H3K27me3) and higher expression levels of differentiation-specific genes. Moreover, Suz12−/− ES cells are impaired in proper differentiation, resulting in a lack of repression of ES cell markers as well as activation of differentiation-specific genes. Finally, we demonstrate that the PcGs are actively recruited to several genes during ES cell differentiation, which despite an increase in H3K27me3 levels is not always sufficient to prevent transcriptional activation. In summary, we demonstrate that Suz12 is required for the establishment of specific expression programs required for ES cell differentiation. Furthermore, we provide evidence that PcGs have different mechanisms to regulate transcription during cellular differentiation.


Genes & Development | 2008

Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease

Paul Cloos; Jesper Christensen; Karl Agger; Kristian Helin

The enzymes catalyzing lysine and arginine methylation of histones are essential for maintaining transcriptional programs and determining cell fate and identity. Until recently, histone methylation was regarded irreversible. However, within the last few years, several families of histone demethylases erasing methyl marks associated with gene repression or activation have been identified, underscoring the plasticity and dynamic nature of histone methylation. Recent discoveries have revealed that histone demethylases take part in large multiprotein complexes synergizing with histone deacetylases, histone methyltransferases, and nuclear receptors to control developmental and transcriptional programs. Here we review the emerging biochemical and biological functions of the histone demethylases and discuss their potential involvement in human diseases, including cancer.

Collaboration


Dive into the Kristian Helin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Pasini

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Karl Agger

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Paul Cloos

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Klaus Hansen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ole Nørregaard Jensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Emanuela Grassilli

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Xudong Wu

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge