Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristian Kristensen is active.

Publication


Featured researches published by Kristian Kristensen.


Geoderma | 1999

Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils

Per Schjønning; Ingrid K. Thomsen; Jens Peter Møberg; Hubert de Jonge; Kristian Kristensen; Bent Christensen

Abstract Soil type effects on organic matter turnover are most often ascribed directly to differences in soil clay content. Since soil texture determines the physical characteristics of soil, aggregation and water holding capacity may be more relevant to address in the search for controls of organic matter turnover. Most studies of microbial processes in soils are based on structurally disturbed soil, where the abiotic conditions for the microbial activity may be quite different from those in intact soils. In this study, basic physical characteristics were determined for structurally disturbed and intact soil samples from differently textured soils. Bulk soil was retrieved from 0–20 cm depth at six locations along a textural gradient in an arable field on Weichselian morainic deposits in Denmark. The samples (NA1 to NA6) ranged in clay from 11 to 45% and in silt from 7 to 15%. Clay and silt-sized organomineral complexes were isolated from NA2 soil by ultrasonic dispersion and sedimentation in water. The clay and silt fractions were added individually and in varying proportions to NA1 soil, providing three clay-amended (CL2, CL4 and CL6) and three silt-amended (SI2, SI4 and SI6) soils. All 12 soils were crushed in air dry state to 100 μm). Air diffusivity and permeability measurements showed disturbed soils to have a less continuous and more tortuous pore system than undisturbed reference samples. Water-filled pore space at a critical level of air diffusion potential was significantly higher for undisturbed than for disturbed samples, especially in soils high in clay. Drop cone measurements showed disturbed soils to be structurally weaker than undisturbed ones. Intact and structurally disturbed soils were found to differ significantly in physical properties even after 17 months of soil structure regeneration. Water-filled pore space seems to reflect the potential of available water and aeration status to regulate aerobic microbial activity of structurally disturbed soil, but not of intact field soil.


Geoderma | 1999

Turnover of organic matter in differently textured soils. II. Microbial activity as influenced by soil water regimes

Ingrid K. Thomsen; Per Schjønning; Bendt Jensen; Kristian Kristensen; Bent Christensen

To evaluate the effect of soil texture and soil water content on decomposition of organic carbon (OC), turnover of partially stabilized 14C-labelled ryegrass residues was studied at four matric potentials in twelve differently textured soils of similar origin and cropping history. Six soils were from a naturally occurring clay gradient and had 11, 16, 21, 31, 37 and 45% clay (termed NA1 to NA6). Three clay-amended soils (CL2, CL4, CL6) and three silt-amended soils (SI2, SI4, SI6) were prepared by adding clay or silt sized organomineral complexes extracted from the NA2 soil to a portion of the NA1 soil. After 14C-labelled ryegrass had decomposed for eight months under field-like conditions, soil cores were sampled, adjusted to four matric potentials (-30, -100, -500 and -1500 hPa) and incubated at 20°C for 15 weeks. The content of native soil organic carbon (SOC) in the NA soils was not related to texture. The SOC content increased with clay and silt in the CL and SI soils because of OC contained in the applied size separates. The relative CO2-evolution from CL and SI soils was lower than from the texturally corresponding NA soils, indicating a slower turnover of C supplied with the clay separate than of bulk OC. Differences in the decomposability of native SOC and residues of 14C-ryegrass were better explained by soil moisture parameters than by soil textural composition. Within each set of soils, evolution of CO2 from native SOC was highly correlated with the volumetric water content. The same was true for 14CO2-evolution, but correlations were significantly improved when 14CO2 was related to water retained in soil pores with diameters >0.2 m. This indicated that the water available for the turnover of residues from ryegrass and of native SOC was retained in different fractions of the pore volume. Our study suggested that water was the main factor in controlling turnover of SOC. Texture effects were indirect and expressed through soil structure which in turn defined the soil pore system and thus the ability of the soils to retain water of different availability to the decomposer organisms.


Computers and Electronics in Agriculture | 2002

The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides

Kristian Kristensen; Ilse A. Rasmussen

The design of a prototype decision support system (DSS) for growing malting barley (Hordeum vulgare L.) without use of pesticides is described. The system comprises a main module and two sub modules. The main module predicts the yield and some quality parameters, assuming no problems with weeds, fungal diseases, insect pests and harvest/post harvest conditions. The two sub-modules handle, respectively, the effects of fungal diseases and weeds and of mechanical weed control. The DSS is constructed as a Bayesian network and thus incorporates and presents information on uncertainties. The paper describes the principles of a Bayesian network and the principles used to calculate the conditional probabilities required in it. The design of the DSS is presented. An example of the use of the prototype and of the output is shown and it is explained how that information can be used. The benefits and some drawbacks of using a Bayesian network to construct a DSS are discussed.


The Journal of Agricultural Science | 2002

Whole-rotation dry matter and nitrogen grain yields from the first course of an organic farming crop rotation experiment

Jørgen E. Olesen; Ilse Ankær Rasmussen; Margrethe Askegaard; Kristian Kristensen

The possibilities for increasing total grain yield in organic cereal production through manipulation of crop rotation design were investigated in a field experiment on different soil types in Denmark from 1997 to 2000. Three experimental factors were included in the experiment in a factorial design: 1) proportion of grass-clover and pulses in the rotation, 2) catch crop (with and without), and 3) manure (with and without). Three four-course rotations were compared. Two of the rotations had one year of grass-clover as a green manure crop, either followed by spring wheat or by winter wheat. The grass-clover was replaced by winter cereals in the third rotation. Animal manure was applied as slurry in rates corresponding to 40% of the nitrogen (N) demand of the cereal crops. Rotational grain yields of the cereal and pulse crops were calculated by summing yields for each plot over the four years in the rotation. The rotational yields were affected by all experimental factors (rotation, manure and catch crop). However, the largest effects on both dry matter and N yields were caused by differences between sites caused by differences in soils, climate and cropping history. The rotation without a green manure crop produced the greatest total yield. Dry matter and N yields in this rotation were about 10% higher than in the rotation with a grass-clover ley in one year of four. Therefore, the yield benefits from the grass-clover ley could not compensate for the yield reduction as a result of leaving 25% of the rotation out of production. There were no differences in dry matter and N yields in grains between the rotations, where either spring or winter cereals followed the grass-clover ley. The N use efficiency for ammonium-N in the applied manure corresponded to that obtained from N in commercial fertilizer. There were only very small yield benefits from the use of catch crops. However, this may change over time as fertility builds up in the system with catch crops.


Journal of Insect Science | 2013

The Effect of Floral Resources on Parasitoid and Host Longevity: Prospects for Conservation Biological Control in Strawberries

Lenei Sigsgaard; Cathrine Betzer; Cyril Naulin; Jørgen Eilenberg; Annie Enkegaard; Kristian Kristensen

Abstract The strawberry tortricid, Acleris comariana Lienig and Zeller (Lepidoptera: Tortricidae) is an important pest in Danish strawberry production. Its most common parasitoid is Copidosoma aretas (Walker) (Hymenoptera: Chalcidoidea: Encyrtidae). To identify selective flowering plants that could be used to increase functional biodiversity, the longevity of C. aretas and its host A. comariana was assessed on 5 flowering species: buckwheat, Fagopyrum esculentum Moench (Caryophyllales: Polygonaceae); borage, Borago officinalis L. (Boraginaceae); strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae); phacelia, Phacelia tanacetifolia Bentham (Boraginaceae); and dill, Anethum graveolens L. (Apiales: Apiaceae). Dill was only tested with C. aretas. Sucrose and pollen served as positive controls, and pure water as a negative control. In a subsequent field experiment, A. comariana larval density was assessed at 1, 6, and 11 m distances from buckwheat flower strips in 3 fields. The proportion of field-collected larvae that were parasitized by C. aretas or fungi was assessed. Among the tested floral diets, buckwheat was superior for C. aretas, increasing its longevity by 1.4 times compared to water. Although buckwheat also increased longevity of A. comariana, its longevity and survival on buckwheat, borage, and strawberry was not significantly different, so buckwheat was chosen for field experiments. A. comariana densities in the 3 fields with sown buckwheat flower strips were 0.5, 4.0, and 8.3 larvae per m per row of strawberry respectively. Of the collected larvae, a total of 1%, 39%, and 65% were parasitized by C. aretas, respectively. The density of A. comariana and the proportion parasitized by C. aretas were highly significantly correlated. Distance from floral strips had no significant effect on either A. comariana larval density or on the proportion of individuals parasitized by C. aretas. Few other parasitoids emerged from collected larvae, and no larvae were infected by entomopathogenic fungi. Still, total A. comariana mortality was significantly affected by distance to flower strips, with the highest mortality near the flower strips. As no effect of buckwheat flower strips on C. aretas parasitism was found, the positive effect they had on A. comariana control stems from unknown mortality factors. As literature indicates that buckwheat for flower strips can augment a more complex suite of natural enemies, one such mortality factor could be a non-consumptive predator and/or parasitoid effect, but this requires further study. If confirmed, buckwheat may be utilized together with a selective food plant, once identified.


Euphytica | 2008

Predicting spring barley yield from variety-specific yield potential, disease resistance and straw length, and from environment-specific disease loads and weed pressure

Hanne Østergård; Kristian Kristensen; Hans O. Pinnschmidt; Preben Klarskov Hansen; Mogens S. Hovmøller

For low-input crop production, well-characterised varieties increase the possibilities of managing diseases and weeds. This analysis aims at developing a framework for analyzing grain yield using external varietal information about disease resistance, weed competitiveness and yield potential and quantifying the impact of susceptibility grouping and straw length scores (as a measure for weed competitiveness) for predicting spring barley grain yield under variable biotic stress levels. The study comprised 52 spring barley varieties and 17 environments, i.e., combinations of location, growing system and year. Individual varieties and their interactions with environments were analysed by factorial regression of grain yield on external variety information combined with observed environmental disease loads and weed pressure. The external information was based on the official Danish VCU testing. The most parsimonious models explained about 50% of the yield variation among varieties including genotype-environment interactions. Disease resistance characteristics of varieties, weighted with disease loads of powdery mildew, leaf rust and net blotch, respectively, had a highly significant influence on grain yield. The extend to which increased susceptibility resulted in increased yield losses in environments with high disease loads of the respective diseases was predicted. The effect of externally determined straw length scores, weighted with weed pressure, was weaker although significant for weeds with creeping growth habit. Higher grain yield was thus predicted for taller plants under weed pressure. The results are discussed in relation to the model framework, impact of the considered traits and use of information from conventional variety testing in organic cropping systems.


Euphytica | 2008

Importance of growth characteristics for yield of barley in different growing systems : will growth characteristics describe yield differently in different growing systems?

Kristian Kristensen; Lars Ericson

The interest in organic grown cereals has increased the need for variety tests under organic growing systems and/or the knowledge on whether growth characteristics describe yield differently under conventional and organic conditions. This paper is a contribution to that question by examining the relationships between some important growth characteristics in barley trials in both systems in Northern Sweden and in Denmark. Mixed model analyses were used for regressions of growth characteristics (or transformations of those) on yield (and log-transformed yield), allowing the slope to depend on the growing system. The analyses showed that diseases seemed to have a less negative effect on yield in the organic growing system than in the conventional growing system if pesticides were not applied. For other characteristics the effect depended on the country. This was the case for grain characteristics where the effect of volume weight in the Swedish trials was much larger in the conventional growing system than in the organic growing system, while a non-significant difference in the opposite direction was found for the trails from Denmark. For the trials from Denmark the effect of grain weight was much larger in the organic growing system than in the conventional growing system, but there was only a small and non-significant difference in the Swedish trials. In both countries there was a significant interaction between the two grain characteristics.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2013

Optimizing the number of consecutive seed harvests in red fescue (Festuca rubra L.) and perennial ryegrass (Lolium perenne L.) for yield, yield components and economic return

L.C. Deleuran; Kristian Kristensen; René Gislum; Birte Boelt

Abstract Crop production must continuously be adjusted according to economic return and fluctuating prices on inputs versus harvested plant products and calls for continuous revision of the crop rotation and flexible management systems. This study describes grass seed production of three different types, respectively, of perennial ryegrass (Lolium perenne L.) and red fescue (Festuca rubra L.) and their optimum number of growing seasons in terms of yield, selected yield components and economic gain. Three harvest years gave the maximum yield in the red fescue type with long stolons (cv. Pernille) and the highest number of fertile tillers in all three red fescue cultivars. Four harvest years gave the maximum yield for types with short stolons (cv. Suzette) and without stolons (cv. Tamara). The fifth year significantly reduced the yield compared to the highest obtained yield within each cultivar. The diploid amenity cv. Allegro and forage type cv. Borvi of perennial ryegrass can be harvested in five consecutive years without a significant yield reduction. The tetraploid type cv. Tivoli had the highest thousand seed weight and a significant yield decrease from the first to the second year of seed harvest and a continuous decline in seed yield is observed from the first to the fifth harvest year in this cultivar. Yet, when the economic incentive was calculated it was found that optimum harvest years cannot be determined by yield considerations alone. A combination of high grass seed price and low cereal price shows that red fescue can be grown up to four years and perennial ryegrass up to five years with high economic returns.


Journal of Insect Science | 2013

Shallot Aphids, Myzus ascalonicus, in Strawberry: Biocontrol Potential of Three Predators and Three Parasitoids

Annie Enkegaard; Lene Sigsgaard; Kristian Kristensen

Abstract The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily predation (34.62 ± 3.45, 25.25 ± 3.18, and 13.34 ± 1.45, respectively). Further studies on A. bipunctata revealed that the larvae maintained their daily predation capacity (32.0 ± 6.3) on strawberry plants. About 60% of already ovipositing A. bipunctata refrained from laying any eggs on the first day after transfer to set-ups with combinations of shallot or peach-potato aphids, Myzus persicae (Sulzer) (Homoptera: Aphididae), and strawberry or sweet pepper leaves. The aphid species and the plant species did not, however, have a significant influence on the number of females laying eggs, the average number of eggs laid during the first day being 6.37±1.28 per female. Adult lady beetles had a significant preference for odor from controls without plants over odors from uninfested strawberry or pepper plants, but they showed no preference for either of the plant species, whether infested with aphids or not. The predation capacity of A. bipunctata on shallot aphids holds promise for its use in inundative biocontrol, and the results on egg laying cues suggests that inoculative biocontrol may be possible, although further studies will be needed for a complete evaluation.


Gcb Bioenergy | 2018

Biomass production and water use efficiency in perennial grasses during and after drought stress

Kirsten Kørup; Poul Erik Lærke; Helle Baadsgaard; Mathias Neumann Andersen; Kristian Kristensen; Cora Münnich; Thomas Didion; Erik Steen Jensen; Linda-Maria Mårtensson; Uffe Jørgensen

Drought is a great challenge to agricultural production, and cultivation of drought‐tolerant or water use‐efficient cultivars is important to ensure high biomass yields for bio‐refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba, Festuca arundinacea cvs. Jordane and Kora, Phalaris arundinacea cvs. Bamse and Chieftain and Festulolium pabulare cv. Hykor, and two C4 species Miscanthus × giganteus and M. lutarioriparius. Control (irrigated) and drought‐treated plants were grown on coarse and loamy sand in 1 m2 lysimeter plots where rain was excluded. Drought periods started after harvest and lasted until 80% of available soil water had been used. Drought caused a decrease in dry matter yield (DM; P < 0.001) for all species and cultivars during the drought period. Cultivars Sevenop, Kora and Jordane produced DM at equal levels and higher than the other C3 cultivars in control and drought‐treated plots both during and after the drought period. Negative correlations were observed between stomatal conductance (gs) and leaf water potential (P < 0.01) and positive correlations between gs and DM (P < 0.05) indicating that gs might be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well‐watered conditions. Compared to control, drought‐treated plots showed increased growth in the period after drought stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought‐treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M. lutarioriparius had the highest DMtotal (15.0 t ha−1), WUEtotal (3.6 g L−1) and radiation use efficiency (2.3 g MJ−1) of the evaluated grasses.

Collaboration


Dive into the Kristian Kristensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanne Østergård

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge