Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristiina Iljin is active.

Publication


Featured researches published by Kristiina Iljin.


Cancer Research | 2011

Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression

Mika Hilvo; Carsten Denkert; Laura Lehtinen; Berit Maria Müller; Scarlet F. Brockmöller; Tuulikki Seppänen-Laakso; Jan Budczies; Elmar Bucher; Laxman Yetukuri; Sandra Castillo; Emilia Berg; Heli Nygren; Marko Sysi-Aho; Julian L. Griffin; Oliver Fiehn; Sibylle Loibl; Christiane Richter-Ehrenstein; Cornelia Radke; Tuulia Hyötyläinen; Olli Kallioniemi; Kristiina Iljin; Matej Orešič

Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many cancers. However, the precise molecular composition of lipids in tumors remains generally poorly characterized. The aim of the present study was to analyze the global lipid profiles of breast cancer, integrate the results to protein expression, and validate the findings by functional experiments. Comprehensive lipidomics was conducted in 267 human breast tissues using ultraperformance liquid chromatography/ mass spectrometry. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, such as palmitate-containing phosphatidylcholines, were increased in tumors as compared with normal breast tissues. These lipids were associated with cancer progression and patient survival, as their concentration was highest in estrogen receptor-negative and grade 3 tumors. In silico transcriptomics database was utilized in investigating the expression of lipid metabolism related genes in breast cancer, and on the basis of these results, the expression of specific proteins was studied by immunohistochemistry. Immunohistochemical analyses showed that several genes regulating lipid metabolism were highly expressed in clinical breast cancer samples and supported also the lipidomics results. Gene silencing experiments with seven genes [ACACA (acetyl-CoA carboxylase α), ELOVL1 (elongation of very long chain fatty acid-like 1), FASN (fatty acid synthase), INSIG1 (insulin-induced gene 1), SCAP (sterol regulatory element-binding protein cleavage-activating protein), SCD (stearoyl-CoA desaturase), and THRSP (thyroid hormone-responsive protein)] indicated that silencing of multiple lipid metabolism-regulating genes reduced the lipidomic profiles and viability of the breast cancer cells. Taken together, our results imply that phospholipids may have diagnostic potential as well as that modulation of their metabolism may provide therapeutic opportunities in breast cancer treatment.


Genome Biology | 2008

Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues

Sami Kilpinen; Reija Autio; Kalle Ojala; Kristiina Iljin; Elmar Bucher; Henri Sara; Tommi Pisto; Matti Saarela; Rolf Skotheim; Mari Björkman; John Patrick Mpindi; Saija Haapa-Paananen; Paula Vainio; Henrik Edgren; Maija Wolf; Jaakko Astola; Sampsa Hautaniemi; Olli Kallioniemi

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly context-specific. Here, we have developed a method for the comparison of mRNA expression levels of most human genes across 9,783 Affymetrix gene expression array experiments representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database of gene expression patterns in normal human tissues and pathological conditions covers 113 million datapoints and is available from the GeneSapiens website.


Cancer Research | 2006

TMPRSS2 Fusions with Oncogenic ETS Factors in Prostate Cancer Involve Unbalanced Genomic Rearrangements and Are Associated with HDAC1 and Epigenetic Reprogramming

Kristiina Iljin; Maija Wolf; Henrik Edgren; Santosh Gupta; Sami Kilpinen; Rolf I. Skotheim; Mari T. Peltola; Frank Smit; Gerald W. Verhaegh; Jack A. Schalken; Olli Kallioniemi

Translocations fusing the strong androgen-responsive gene, TMPRSS2, with ERG or other oncogenic ETS factors may facilitate prostate cancer development. Here, we studied 18 advanced prostate cancers for ETS factor alterations, using reverse transcription-PCR and DNA and RNA array technologies, and identified putative ERG downstream gene targets from the microarray data of 410 prostate samples. Out of the 27 ETS factors, ERG was most frequently overexpressed. Seven cases showed TMPRSS2:ERG gene fusions, whereas the TMPRSS2:ETV4 fusion was seen in one case. In five out of six tumors with high ERG expression, array-CGH analysis revealed interstitial 2.8 Mb deletions between the TMPRSS2 and ERG loci, or smaller, unbalanced rearrangements. In silico analysis of the ERG gene coexpression patterns revealed an association with high expression of the histone deacetylase 1 gene, and low expression of its target genes. Furthermore, we observed increased expression of WNT-associated pathways and down-regulation of tumor necrosis factor and cell death pathways. In summary, our data indicate that the TMPRSS2:ERG translocation is common in advanced prostate cancer and occurs by virtue of unbalanced genomic rearrangements. Activation of ERG by fusion with TMPRSS2 may lead to epigenetic reprogramming, WNT signaling, and down-regulation of cell death pathways, implicating ERG in several hallmarks of cancer with potential therapeutic importance.


Cancer Research | 2010

FZD4 as a Mediator of ERG Oncogene–Induced WNT Signaling and Epithelial-to-Mesenchymal Transition in Human Prostate Cancer Cells

Santosh Gupta; Kristiina Iljin; Henri Sara; John Patrick Mpindi; Tuomas Mirtti; Paula Vainio; Juha Rantala; Kalle Alanen; Olli Kallioniemi

TMPRSS2-ERG and other gene fusions involving ETS factors and genes with strong promoter elements are common in prostate cancer. Although ERG activation has been linked to invasive properties of prostate cancers, the precise mechanisms and pathways of ERG-mediated oncogenesis remain poorly understood. Here, we show that ERG knockdown in VCaP prostate cancer cells causes an activation of cell adhesion, resulting in strongly induced active beta(1)-integrin and E-cadherin expression as well as changes in WNT signaling. These observations were corroborated by data from ERG-overexpressing nontransformed prostate epithelial cells as well as gene expression data from clinical prostate cancer samples, which both indicated a link between ERG and epithelial-to-mesenchymal transition (EMT). Upregulation of several WNT pathway members was seen in ERG-positive prostate cancers, with frizzled-4 (FZD4) showing the strongest overexpression as verified by both reverse transcription-PCR and immunostaining. Both ERG knockin and knockdown modulated the levels of FZD4 expression. FZD4 silencing could mimic the ERG knockdown phenotype by inducing active beta(1)-integrin and E-cadherin expression, whereas FZD4 overexpression reversed the phenotypic effects seen with ERG knockdown. Taken together, our results provide mechanistic insights to ERG oncogenesis in prostate cancer, involving activation of WNT signaling through FZD4, leading to cancer-promoting phenotypic effects, including EMT and loss of cell adhesion.


British Journal of Cancer | 2012

Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress

Kirsi Ketola; Mika Hilvo; Tuulia Hyötyläinen; Vuoristo A; Anna-Liisa Ruskeepää; Matej Orešič; Olli Kallioniemi; Kristiina Iljin

Background:We have shown that a sodium ionophore monensin inhibits prostate cancer cell growth. A structurally related compound to monensin, salinomycin, was recently identified as a putative cancer stem cell inhibitor.Methods:The growth inhibitory potential of salinomycin was studied in a panel of prostate cells. To get insights into the mechanism of action, a variety of assays such as gene expression and steroid profiling were performed in salinomycin-exposed prostate cancer cells.Results:Salinomycin inhibited the growth of prostate cancer cells, but did not affect non-malignant prostate epithelial cells. Salinomycin impacted on prostate cancer stem cell functions as evidenced by reduced aldehyde dehydrogenase activity and the fraction of CD44+ cells. Moreover, salinomycin reduced the expression of MYC, AR and ERG, induced oxidative stress as well as inhibited nuclear factor-κB activity and cell migration. Furthermore, profiling steroid metabolites revealed increased levels of oxidative stress-inducing steroids 7-ketocholesterol and aldosterone and decreased levels of antioxidative steroids progesterone and pregnenolone in salinomycin-exposed prostate cancer cells.Conclusion:Our results indicate that salinomycin inhibits prostate cancer cell growth and migration by reducing the expression of key prostate cancer oncogenes, inducing oxidative stress, decreasing the antioxidative capacity and cancer stem cell fraction.


Journal of Mammary Gland Biology and Neoplasia | 2008

Role of ErbB4 in Breast Cancer

Maria Sundvall; Kristiina Iljin; Sami Kilpinen; Henri Sara; Olli-Pekka Kallioniemi; Klaus Elenius

Members of the ErbB subfamily of receptor tyrosine kinases are important regulators of normal mammary gland physiology, and aberrations in their signaling have been associated with breast tumorigenesis. Therapeutics targeting epidermal growth factor receptor (EGFR = ErbB1) or ErbB2 in breast cancer have been approved for clinical use. In contrast, relatively little is known about the biological significance of ErbB4 signaling in breast cancer. This review focuses on recent advances in our understanding about the role of ErbB4 in breast carcinogenesis, as well as in the potential clinical relevance of ErbB4 in breast cancer prognostics and therapy.


Clinical Cancer Research | 2009

High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth

Kristiina Iljin; Kirsi Ketola; Paula Vainio; Pasi Halonen; Pekka Kohonen; Vidal Fey; Roland C. Grafström; Merja Perälä; Olli Kallioniemi

Purpose: To identify novel therapeutic opportunities for patients with prostate cancer, we applied high-throughput screening to systematically explore most currently marketed drugs and drug-like molecules for their efficacy against a panel of prostate cancer cells. Experimental Design: We carried out a high-throughput cell-based screening with proliferation as a primary end-point using a library of 4,910 drug-like small molecule compounds in four prostate cancer (VCaP, LNCaP, DU 145, and PC-3) and two nonmalignant prostate epithelial cell lines (RWPE-1 and EP156T). The EC50 values were determined for each cell type to identify cancer selective compounds. The in vivo effect of disulfiram (DSF) was studied in VCaP cell xenografts, and gene microarray and combinatorial studies with copper or zinc were done in vitro for mechanistic exploration. Results: Most of the effective compounds, including antineoplastic agents, were nonselective and found to inhibit both cancer and control cells in equal amounts. In contrast, histone deacetylase inhibitor trichostatin A, thiram, DSF, and monensin were identified as selective antineoplastic agents that inhibited VCaP and LNCaP cell proliferation at nanomolar concentrations. DSF reduced tumor growth in vivo, induced metallothionein expression, and reduced DNA replication by downregulating MCM mRNA expression. The effect of DSF was potentiated by copper in vitro. Conclusions: We identified three novel cancer-selective growth inhibitory compounds for human prostate cancer cells among marketed drugs. We then validated DSF as a potential prostate cancer therapeutic agent. These kinds of pharmacologically well-known molecules can be readily translated to in vivo preclinical studies and clinical trials. (Clin Cancer Res 2009;15(19):6070–8)


Cell Cycle | 2011

Function of ERBB4 is determined by alternative splicing.

Ville Veikkolainen; Katri Vaparanta; Kalle Halkilahti; Kristiina Iljin; Maria Sundvall; Klaus Elenius

Alternative splicing is a central tool of evolution that significantly increases the size of transcriptomes and generates functional specification. Within the human ERBB receptor gene family, only ERBB4 is known to produce functionally distinct isoforms as a result of alternative splicing. While ErbB4 signaling has been demonstrated to regulate cellular processes involved in embryogenesis, carcinogenesis and cardiovascular and psychiatric diseases, relatively little is known about the contribution of the individual isoforms in the different biological contexts. Here, we review recent findings as well as provide novel data about the distribution and functions of the ERBB4 splice variants. These observations represent an example of how minor alterations in the transcripts of a single gene can result in even antagonistic cellular responses. The observations also underline the significance of understanding the unique functions of isoforms of a potential drug target gene.


Genome Medicine | 2012

Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery

Carsten Denkert; Elmar Bucher; Mika Hilvo; Reza M. Salek; Matej Orešič; Julian L. Griffin; Scarlet F. Brockmöller; Frederick Klauschen; Sibylle Loibl; Dinesh K. Barupal; Jan Budczies; Kristiina Iljin; Valentina Nekljudova; Oliver Fiehn

Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development.


International Journal of Cancer | 2008

Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer

Mari Björkman; Kristiina Iljin; Pasi Halonen; Henri Sara; Elisa Kaivanto; Olli Kallioniemi

Gene fusions between prostate‐specific, androgen responsive TMPRSS2 gene and oncogenic ETS factors, such as ERG, occur in up to 50% of all prostate cancers. We recently defined a gene signature that was characteristic to prostate cancers with ERG activation. This suggested epigenetic reprogramming, such as upregulation of histone deactylase 1 (HDAC1) gene and downregulation of its target genes. We then hypothesized that patients with ERG‐positive prostate cancers may benefit from epigenetic therapy such as HDAC inhibition (HDACi), especially in combination with antiandrogens. Here, we exposed ERG‐positive prostate cancer cell lines to HDAC inhibitors Trichostatin A (TSA), MS‐275 and suberoylanilide hydroxamic acid (SAHA) with or without androgen deprivation. We explored the effects on cell phenotype, gene expression as well as ERG and androgen receptor (AR) signaling. When compared with 5 other prostate cell lines, ERG‐positive VCaP and DuCap cells were extremely sensitive to HDACi, in particular TSA, showing synergy with concomitant androgen deprivation increasing apoptosis. Both of the HDAC inhibitors studied caused repression of the ERG‐fusion gene, whereas the pan‐HDAC inhibitor TSA prominently repressed the ERG‐associated gene signature. Additionally, HDACi and flutamide caused retention of AR in the cytoplasm, indicating blockage of androgen signaling. Our results support the hypothesis that HDACi, especially in combination with androgen deprivation, is effective against TMPRSS2‐ERG‐fusion positive prostate cancer in vitro. Together with our previous in vivo observations of an “epigenetic reprogramming gene signature” in clinical ERG‐positive prostate cancers, these studies provide mechanistic insights to ERG‐associated tumorigenesis and suggest therapeutic paradigms to be tested in vivo.

Collaboration


Dive into the Kristiina Iljin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Lehtinen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vidal Fey

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Hilvo

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge