Kristin C. Schutz
University of Vermont
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin C. Schutz.
Psychoneuroendocrinology | 2009
Sayamwong E. Hammack; Joseph Cheung; Kimberly Rhodes; Kristin C. Schutz; William A. Falls; Karen M. Braas; Victor May
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC(1) receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC(1) receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 days chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC(1) receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC(1) receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior.
PLOS Genetics | 2013
Kelly A. Fimlaid; Jeffrey P. Bond; Kristin C. Schutz; Emily E. Putnam; Jacqueline M. Leung; Trevor D. Lawley; Aimee Shen
The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σF, σE, σG, and σK are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σF, σE, σG, and σK in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σF-dependent, 169 were σE-dependent, 34 were σG-dependent, and 31 were σK-dependent. In contrast with B. subtilis, C. difficile σE was dispensable for σG activation, σG was dispensable for σK activation, and σF was required for post-translationally activating σG. Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
Journal of Biological Chemistry | 2010
Victor May; Eve M. Lutz; Christopher MacKenzie; Kristin C. Schutz; Kate Dozark; Karen M. Braas
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.
Journal of Biological Chemistry | 2010
Victor May; Eve M. Lutz; Christopher MacKenzie; Kristin C. Schutz; Kate Dozark; Karen M. Braas
MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways.
Peptides | 2007
Karen M. Braas; Kristin C. Schutz; Jeffrey P. Bond; Margaret A. Vizzard; Beatrice M. Girard; Victor May
The high and preferential expression of the PAC(1)(short)HOP1 receptor in postganglionic sympathetic neurons facilitates microarray studies for mechanisms underlying PACAP-mediate neurotrophic signaling in a physiological context. Replicate primary sympathetic neuronal cultures were treated with 100 nM PACAP27 either acutely (9 h) or chronically (96 h) before RNA extraction and preparation for Affymetrix microarray analysis. Compared to untreated control cultures, acute PACAP treatment modulated significantly the expression of 147 transcripts of diverse functional groups, including peptides, growth factors/cytokines, transcriptional factors, receptors/signaling effectors and cell cycle regulators, that collectively appeared to facilitate neuronal plasticity, differentiation and/or regeneration processes. Some regulated transcripts, for example, were related to BDNF/TrkB, IL-6/Jak2/Socs2 and TGF/follistatin signaling; many transcripts affected bioactive peptide and polyamine biosynthesis. Although chronic PACAP treatments altered the expression of 109 sympathetic transcripts, only 43 transcripts were shared between the acute and chronic treatment data sets. The PACAP-mediated changes in transcript expression were corroborated independently by quantitative PCR measurement. The PACAP-regulated transcripts in sympathetic neurons did not bear strong resemblance to those in PACAP-treated pheochromocytoma cells. However, many PACAP-targeted sympathetic transcripts, especially those related to peptide plasticity and nerve regeneration processes, coincided significantly with genes altered after peripheral nerve injury. The ability for sympathetic PAC(1)(short)HOP1 receptors to engage multiple downstream signaling cascades appeared to be reflected in the number and diversity of genes targeted in a multifaceted strategy for comprehensive neurotrophic responses.
American Journal of Physiology-renal Physiology | 2008
Bopaiah P. Cheppudira; Beatrice M. Girard; Susan E. Malley; Kristin C. Schutz; Victor May; Margaret A. Vizzard
Regulation of the VEGF-VEGF receptor system was examined in the urinary bladder after acute (2-48 h) and chronic (10 days) cyclophosphamide (CYP)-induced cystitis. ELISAs demonstrated significant (P < or = 0.01) upregulation of VEGF in whole urinary bladder with acute and chronic CYP-induced cystitis; however, the magnitude of increase was greater after acute (2-4 h) cystitis. Immunohistochemistry for VEGF immunoreactivity revealed a significant (P < or = 0.05) increase in VEGF immunoreactivity in the urothelium, suburothelial vasculature, and detrusor smooth muscle with acute (4 and 48 h) CYP treatment. RT-PCR identified the isoform VEGF-164, the VEGF receptor VEGFR-2, and the VEGF co-receptors neuropilin (Npn)-1 and Npn-2 in the urinary bladder. Quantitative PCR demonstrated upregulation of VEGF-164 transcript with acute and chronic CYP-induced cystitis, but VEGFR-2, Npn-1, and Npn-2 transcripts were upregulated (P < or = 0.01) in whole bladder only with chronic CYP-induced cystitis. Additional studies demonstrated regulation of VEGF transcript expression in the urinary bladder by nerve growth factor (NGF) in a novel line of NGF-overexpressing mice. These studies demonstrated that urinary bladder inflammation and NGF regulate the VEGF-VEGF receptor system in the urinary bladder. Functional role(s) for the VEGF-VEGF receptor system in urinary bladder inflammation remain to be determined.
Regulatory Peptides | 2004
Beatrice M. Girard; Emily T. Keller; Kristin C. Schutz; Victor May; Karen M. Braas
Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.
Journal of Neurochemistry | 2007
Kristen Pavelock; Beatrice M. Girard; Kristin C. Schutz; Karen M. Braas; Victor May
Among bone morphogenetic proteins (BMPs), the decapentaplegic (Dpp; BMP2, BMP4) and glass bottom boat (Gbb/60A; BMP5, BMP6, BMP7) subgroups have well‐described functions guiding autonomic and sensory neuronal development, fiber formation and neurophenotypic identities. Evaluation of rat superior cervical ganglia (SCG) post‐ganglionic sympathetic neuron developmental regulators identified that selected BMPs of the transforming growth factor beta superfamily have reciprocal effects on neuronal pituitary adenylate cyclase‐activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) expression. Dpp and Gbb/60A BMPs rapidly down‐regulated PACAP expression, while up‐regulating other sympathetic neuropeptides, including PACAP‐related VIP. The suppressive effects of BMP on PACAP mRNA and peptide expression were potent, efficacious and phosphorylated mothers against decapentaplegic homolog (Smad) signaling‐dependent. Axotomy of SCG dramatically increases PACAP expression, and the possibility that abrogation of inhibitory retrograde target tissue BMP signaling may contribute to this up‐regulation of sympathetic neuron PACAP was investigated. Replacement of BMP6 to SCG explant preparations significantly blunted the injury‐induced elevated PACAP expression, with a concomitant decrease in sympathetic PACAP‐immunoreactive neuron numbers. These studies suggested that BMPs modulate neuropeptide identity and diversity by stimulating or restricting the expression of specific peptidergic systems. Furthermore, the liberation of SCG neurons from target‐derived BMP inhibition following axotomy may be one participating mechanism associated with injury‐induced neuropeptidergic plasticity.
American Journal of Physiology-renal Physiology | 2009
Bopaiah P. Cheppudira; Beatrice M. Girard; Susan E. Malley; Abbey Dattilio; Kristin C. Schutz; Victor May; Margaret A. Vizzard
Cytokines are upregulated in a variety of inflammatory conditions and cytokine/receptor interactions can activate JAK-STAT signaling. Previous studies demonstrated upregulation of numerous cytokines in the urinary bladder following cyclophosphamide (CYP)-induced cystitis. The role of JAK-STAT signaling in urinary bladder inflammation and referred somatic sensitivity has not been addressed. The contribution of JAK-STAT signaling pathways in CYP-induced bladder hyperreflexia and referred somatic hypersensitivity was determined in CYP-treated rats using a JAK2 inhibitor, AG490. Acute (4 h; 150 mg/kg ip), intermediate (48 h; 150 mg/kg ip), or chronic (75 mg/kg ip, once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Phosphorylation status of STAT-3 was increased in urinary bladder after CYP-induced cystitis (4 h, 48 h, chronic). Blockade of JAK2 with AG490 (5-15 mg/kg ip or intravesical) significantly (P < or = 0.05) reduced bladder hyperreflexia and hind paw sensitivity in CYP-treated rats. These studies demonstrate a potential role for JAK-STAT signaling pathways in bladder hyperreflexia and referred pain induced by CYP-induced bladder inflammation.
Frontiers in Neuroscience | 2011
Beatrice M. Girard; Bopaiah P. Cheppudira; Susan E. Malley; Kristin C. Schutz; Victor May; Margaret A. Vizzard
Recent studies suggest that janus-activated kinases–signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways.