Kristin Feltmann
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Feltmann.
Psychoneuroendocrinology | 2013
Emil Egecioglu; Pia Steensland; Ida Fredriksson; Kristin Feltmann; Jörgen A. Engel; Elisabet Jerlhag
Development of alcohol use disorders largely depends on the effects of alcohol on the brain reward systems. Emerging evidence indicate that common mechanisms regulate food and alcohol intake and raise the possibility that endocrine signals from the gut may play an important role for alcohol consumption, alcohol-induced reward and the motivation to consume alcohol. Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide regulating food intake and glucose homeostasis, has recently been shown to target central brain areas involved in reward and motivation, including the ventral tegmental area and nucleus accumbens. Herein we investigated the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on various measures of alcohol-induced reward as well as on alcohol intake and alcohol seeking behavior in rodents. Treatment with Ex4, at a dose with no effect per se, attenuated alcohol-induced locomotor stimulation and accumbal dopamine release in mice. Furthermore, conditioned place preference for alcohol was abolished by both acute and chronic treatment with Ex4 in mice. Finally we found that Ex4 treatment decreased alcohol intake, using the intermittent access 20% alcohol two-bottle-choice model, as well as alcohol seeking behavior, using the progressive ratio test in the operant self-administration model, in rats. These novel findings indicate that GLP-1 signaling attenuates the reinforcing properties of alcohol implying that the physiological role of GLP-1 extends beyond glucose homeostasis and food intake regulation. Collectively these findings implicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for alcohol use disorders.
The International Journal of Neuropsychopharmacology | 2011
Anders Borgkvist; Torun Malmlöf; Kristin Feltmann; Maria Lindskog; Björn Schilström
Abnormal dopaminergic neurotransmission in the hippocampus may be involved in certain aspects of cognitive dysfunction. In the hippocampus, there is little, if any, expression of dopamine transporters (DAT), indicating that the mechanism for dopamine clearance differs from that in the striatum. Here, by means of in-vivo microdialysis in freely moving rats, we tested the hypothesis that the norepinephrine transporter (NET) is involved in dopamine clearance in the hippocampus. We found that systemic administration of the selective NET inhibitor reboxetine (3 mg/kg) and the psychostimulants amphetamine (0.5 mg/kg) and cocaine (10 mg/kg) increased hippocampal dopamine efflux. Local administration of reboxetine (300 μM) produced a large increase in hippocampal dopamine levels that could not be further enhanced by the addition of the NET/DAT inhibitor nomifensine (100 μM). Administration of the specific DAT inhibitor GBR12909 at a concentration (1 mM) that robustly increased dopamine in the nucleus accumbens had a comparably smaller effect in the hippocampus. In line with a minor role of DAT in the hippocampus, we detected very little DAT in this area using ligand binding with radiolabelled RTI-55. Moreover, in contrast to raclopride (100 μM), a dopamine D2-autoreceptor antagonist, local administration of the α2-adrenoceptor antagonist idazoxan (100 μM) increased hippocampal dopamine. Taken together, our data demonstrate an interaction between dopamine and norepinephrine systems in the hippocampus. It is proposed that this interaction originates from a shared uptake mechanism at the NET level.
Synapse | 2011
Björn Schilström; Åsa Konradsson-Geuken; Vladimir Ivanov; Jens Gertow; Kristin Feltmann; Monica M. Marcus; Kent Jardemark; Torgny H. Svensson
Escitalopram, the S‐enantiomer of citalopram, possesses superior efficacy compared to other selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depression. Escitalopram binds to an allosteric site on the serotonin transporter, which further enhances the blockade of serotonin reuptake, whereas R‐citalopram antagonizes this positive allosteric modulation. Escitaloprams effects on neurotransmitters other than serotonin, for example, dopamine and glutamate, are not well studied. Therefore, we here studied the effects of escitalopram, citalopram, and R‐citalopram on dopamine cell firing in the ventral tegmental area, using single‐cell recording in vivo and on NMDA receptor‐mediated currents in pyramidal neurons in the medial prefrontal cortex using in vitro electrophysiology in rats. The cognitive effects of escitalopram and citalopram were also compared using the novel object recognition test. Escitalopram (40–640 μg/kg i.v.) increased both firing rate and burst firing of dopaminergic neurons, whereas citalopram (80–1280 μg/kg) had no effect on firing rate and only increased burst firing at high dosage. R‐citalopram (40–640 μg/kg) had no significant effects. R‐citalopram (320 μg/kg) antagonized the effects of escitalopram (320 μg/kg). A very low concentration of escitalopram (5 nM), but not citalopram (10 nM) or R‐citalopram (5 nM), potentiated NMDA‐induced currents in pyramidal neurons. Escitaloprams effect was antagonized by R‐citalopram and blocked by the dopamine D1 receptor antagonist SCH23390. Escitalopram, but not citalopram, improved recognition memory. Our data suggest that the excitatory effect of escitalopram on dopaminergic and NMDA receptor‐mediated neurotransmission may have bearing on its cognitive‐enhancing effect and superior efficacy compared to other SSRIs in major depression. Synapse, 2010.
Addiction Biology | 2016
Kristin Feltmann; Ida Fredriksson; Malin Wirf; Björn Schilström; Pia Steensland
We recently established that the monoamine stabilizer (−)‐OSU6162 (OSU6162) decreased voluntary alcohol‐mediated behaviors, including alcohol intake and cue/priming‐induced reinstatement, in long‐term drinking rats, while blunting alcohol‐induced dopamine output in the nucleus accumbens (NAc) of alcohol‐naïve rats. Therefore, we hypothesized that OSU6162 attenuates alcohol‐mediated behaviors by blunting alcohols rewarding effects. Here, we evaluated the effects of long‐term drinking and OSU6162 treatment (30 mg/kg, sc) on basal and alcohol‐induced (2.5 g/kg, ip) NAc dopamine outputs in Wistar rats after 10 months of intermittent access to 20% alcohol. The results showed that basal and alcohol‐induced NAc dopamine outputs were significantly lower in long‐term drinking rats, compared with alcohol‐naïve rats. In the long‐term drinking rats, OSU6162 slowly increased and maintained the dopamine output significantly elevated compared with baseline for at least 4 hours. Furthermore, OSU6162 pre‐treatment did not blunt the alcohol‐induced output in the long‐term drinking rats, a finding that contrasted with our previous results in alcohol‐naïve rats. Finally, OSU6162 did not induce conditioned place preference (CPP) in either long‐term drinking or alcohol‐naïve rats, indicating that OSU6162 has no reinforcing properties. To verify that the CPP results were not due to memory acquisition impairment, we demonstrated that OSU6162 did not affect novel object recognition. In conclusion, these results indicate that OSU6162 attenuates alcohol‐mediated behaviors by counteracting NAc dopamine deficits in long‐term drinking rats and that OSU6162 is not rewarding on its own. Together with OSU6162s beneficial side‐effect profile, the present study merits evaluation of OSU6162s clinical efficacy to attenuate alcohol use in alcohol‐dependent patients.
European Neuropsychopharmacology | 2016
Monica M. Marcus; Carl Björkholm; Anna Malmerfelt; Annie Möller; Ninni Påhlsson; Åsa Konradsson-Geuken; Kristin Feltmann; Kent Jardemark; Björn Schilström; Torgny H. Svensson
Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.
Journal of Neural Transmission | 2015
Torun Malmlöf; Kristin Feltmann; Åsa Konradsson-Geuken; Frank Schneider; Rudolf-Giesbert Alken; Torgny H. Svensson; Björn Schilström
Abstract The most effective treatment of Parkinson’s disease (PD) l-DOPA is associated with major side effects, in particular l-DOPA-induced dyskinesia, which motivates development of new treatment strategies. We have previously shown that chronic treatment with a substantially lower dose of deuterium-substituted l-DOPA (D3-l-DOPA), compared with l-DOPA, produced equal anti-parkinsonian effect and reduced dyskinesia in 6-OHDA-lesioned rats. The advantageous effects of D3-l-DOPA are in all probability related to a reduced metabolism of deuterium dopamine by the enzyme monoamine oxidase (MAO). Therefore, a comparative neurochemical analysis was here performed studying the effects of D3-l-DOPA and l-DOPA on dopamine output and metabolism in 6-OHDA-lesioned animals using in vivo microdialysis. The effects produced by D3-l-DOPA and l-DOPA alone were additionally compared with those elicited when the drugs were combined with the MAO-B inhibitor selegiline, used in PD treatment. The different treatment combinations were first evaluated for motor activation; here the increased potency of D3-l-DOPA, as compared to that of l-DOPA, was confirmed and shown to be of equal magnitude as the effect produced by the combination of selegiline/l-DOPA. The extracellular levels of dopamine were also increased following both D3-l-DOPA and selegiline/l-DOPA administration compared with l-DOPA administration. The enhanced behavioral and neurochemical effects produced by D3-l-DOPA and the combination of selegiline/l-DOPA are attributed to decreased metabolism of released dopamine by MAO-B. The similar effect produced by D3-l-DOPA and selegiline/l-DOPA, respectively, is of considerable clinical interest since D3-l-DOPA, previously shown to exhibit a wider therapeutic window, in addition may reduce the need for adjuvant MAO-B inhibitor treatment.
Alcoholism: Clinical and Experimental Research | 2018
Kristin Feltmann; Dasiel O. Borroto-Escuela; Joëlle Rüegg; Luca Pinton; Thatiane de Oliveira Sergio; Manuel Narváez; Antonio Jiménez-Beristain; Tomas J. Ekström; Kjell Fuxe; Pia Steensland
Background Reduced dopamine D2 receptor (D2R) ligand binding has repeatedly been demonstrated in the striatum of humans with alcohol use disorder (AUD). The attenuated D2R binding has been suggested to reflect a reduced D2R density, which in turn has been proposed to drive craving and relapse. However, results from rodent studies addressing the effects of alcohol drinking on D2R density have been inconsistent. Methods A validated alcohol drinking model (intermittent access to 20% alcohol) in Wistar rats was used to study the effects of voluntary alcohol drinking (at least 12 weeks) on the D2R in the striatum compared to age‐matched alcohol‐naïve control rats. Reverse transcriptase quantitative PCR was used to quantify isoform‐specific Drd2 gene expression levels. Using bisulfite pyrosequencing, DNA methylation levels of a regulatory region of the Drd2 gene were determined. In situ proximity ligation assay was used to measure densities of D2R receptor complexes: D2R‐D2R, adenosine A2A receptor (A2AR)‐D2R, and sigma1 receptor (sigma1R)‐D2R. Results Long‐term voluntary alcohol drinking significantly reduced mRNA levels of the long D2R isoform in the nucleus accumbens (NAc) but did not alter CpG methylation levels in the analyzed sequence of the Drd2 gene. Alcohol drinking also reduced the striatal density of D2R‐D2R homoreceptor complexes, increased the density of A2AR‐D2R heteroreceptor complexes in the NAc shell and the dorsal striatum, and decreased the density of sigma1R‐D2R heteroreceptor complexes in the dorsal striatum. Conclusions The present results on long‐term alcohol drinking might reflect reduced D2R levels through reductions in D2R‐D2R homoreceptor complexes and gene expression. Furthermore, based on antagonistic interactions between A2AR and D2R, an increased density of A2AR‐D2R heteroreceptor complexes might indicate a reduced affinity and signaling of the D2R population within the complex. Hence, both reduced striatal D2R levels and reduced D2R protomer affinity within the striatal A2AR‐D2R complex might underlie reduced D2R radioligand binding in humans with AUD. This supports the hypothesis of a hypodopaminergic system in AUD and suggests the A2AR‐D2R heteroreceptor complex as a potential novel treatment target.
Neuropsychopharmacology | 2018
Kristin Feltmann; Chiara Giuliano; Barry J. Everitt; Pia Steensland; Johan Alsiö
Binge-eating disorder (BED) is characterized by recurring episodes of excessive consumption of palatable food and an increased sensitivity to food cues. Patients with BED display an addiction-like symptomatology and the dopamine system might be a potential treatment target. The clinically safe monoamine stabilizer (−)-OSU6162 (OSU6162) restores dopaminergic dysfunction in long-term alcohol-drinking rats and shows promise as a novel treatment for alcohol use disorder. Here, the effects of OSU6162 on consummatory (binge-like eating) and appetitive (cue-controlled seeking) behavior motivated by chocolate-flavored sucrose pellets were evaluated in non-food-restricted male Lister Hooded rats. OSU6162 significantly reduced binge-like intake of chocolate-flavored sucrose pellets without affecting prior chow intake. Furthermore, OSU6162 significantly reduced the cue-controlled seeking of chocolate-flavored sucrose pellets under a second-order schedule of reinforcement before, but not after, the delivery and ingestion of reward, indicating a selective effect on incentive motivational processes. In contrast, the dopamine D2/D3 receptor antagonist raclopride reduced the seeking of chocolate-flavored sucrose pellets both pre- and post reward ingestion and also reduced responding under simpler schedules of seeking behavior. The D1/5 receptor antagonist SCH23390 had no effect on instrumental behavior under any reinforcement schedule tested. Finally, local administration of OSU6162 into the nucleus accumbens core, but not dorsolateral striatum, selectively reduced cue-controlled sucrose seeking. In conclusion, the present results show that OSU6162 reduces binge-like eating behavior and attenuates the impact of cues on seeking of palatable food. This indicates that OSU6162 might serve as a novel BED medication.
Behavioral Neuroscience | 2015
Kristin Feltmann; Åsa Konradsson-Geuken; Dimitri De Bundel; Maria Lindskog; Björn Schilström
Patients suffering from major depression often experience memory deficits even after the remission of mood symptoms, and many antidepressant drugs do not affect, or impair, memory in animals and humans. However, some antidepressant drugs, after a single dose, enhance cognition in humans (Harmer et al., 2009). To compare different classes of antidepressant drugs for their potential as memory enhancers, we used a version of the novel object recognition task in which rats spontaneously forget objects 24 hr after their presentation. Antidepressant drugs were injected systemically 30 min before or directly after the training phase (Session 1 [S1]). Post-S1 injections were used to test for specific memory-consolidation effects. The noradrenaline reuptake inhibitors reboxetine and atomoxetine, as well as the serotonin noradrenaline reuptake inhibitor duloxetine, injected prior to S1 significantly enhanced recognition memory. In contrast, the serotonin reuptake inhibitors citalopram and paroxetine and the cyclic antidepressant drugs desipramine and mianserin did not enhance recognition memory. Post-S1 injection of either reboxetine or citalopram significantly enhanced recognition memory, indicating an effect on memory consolidation. The fact that citalopram had an effect only when injected after S1 suggests that it may counteract its own consolidation-enhancing effect by interfering with memory acquisition. However, pretreatment with citalopram did not attenuate reboxetines memory-enhancing effect. The D1/5-receptor antagonist SCH23390 blunted reboxetines memory-enhancing effect, indicating a role of dopaminergic transmission in reboxetine-induced recognition memory enhancement. Our results suggest that antidepressant drugs specifically inhibiting noradrenaline reuptake enhance cognition and may be beneficial in the treatment of cognitive symptoms of depression.
European Neuropsychopharmacology | 2012
Kristin Feltmann; Åsa Konradsson-Geuken; D. De Bundel; Björn Schilström; Maria Lindskog
References: Borgkvist A, Malmlöf T, Feltmann K, Lindskog M, Schilström B (2011) Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int J Neuropsychopharmacol 2011 Jun 14:1-10. [Epub ahead of print]; Ennaceur A and Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behavioral Brain Research 31:47-59.; Ferguson JM, Wesnes KA and Schwartz GE (2003) Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients. Int Clin Psychopharmacol 18:9-14. Harmer CJ, O’Sullivan U, Favaron E, Massey-Chase R, Ayres R, Reinecke A, Goodwin GM and Cowen PJ (2009) Effect of acute antidepressants administration on negative affective bias in depressed patients. Am. J. Psychiatry 166:1178-1184.; Linnér L, Endersz H, Ohman D, Bengtsson F, Schalling M. and Svensson TH (2001) Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex. J Pharmacol Exp Ther 297:540-546. Summary