Kristin Fiegert
Australian Astronomical Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Fiegert.
Monthly Notices of the Royal Astronomical Society | 2009
D. Heath Jones; Mike Read; Will Saunders; Matthew Colless; T. H. Jarrett; Quentin A. Parker; A. P. Fairall; Thomas Mauch; Elaine M. Sadler; Fred G. Watson; D. Burton; Lachlan Campbell; Paul Cass; Scott M. Croom; J. A. Dawe; Kristin Fiegert; Leela M. Frankcombe; Malcolm Hartley; John P. Huchra; Dionne James; Emma M. Kirby; Ofer Lahav; John R. Lucey; Gary A. Mamon; Lesa Moore; Bruce A. Peterson; Sayuri L. Prior; Dominique Proust; K. S. Russell; V. Safouris
We report the final redshift release of the 6dF Galaxy Survey (6dFGS), a combined redshift and peculiar velocity survey over the southern sky (|b| > 10°). Its 136 304 spectra have yielded 110 256 new extragalactic redshifts and a new catalogue of 125 071 galaxies making near-complete samples with (K, H, J, r_F, b_J) ≤ (12.65, 12.95, 13.75, 15.60, 16.75). The median redshift of the survey is 0.053. Survey data, including images, spectra, photometry and redshifts, are available through an online data base. We describe changes to the information in the data base since earlier interim data releases. Future releases will include velocity dispersions, distances and peculiar velocities for the brightest early-type galaxies, comprising about 10 per cent of the sample. Here we provide redshift maps of the southern local Universe with z ≤ 0.1, showing nearby large-scale structures in hitherto unseen detail. A number of regions known previously to have a paucity of galaxies are confirmed as significantly underdense regions. The URL of the 6dFGS data base is http://www-wfau.roe.ac.uk/6dFGS.
Scopus | 2006
M. Steinmetz; A. Siebert; Harry Enke; C. Boeche; Andreas Kelz; R-D Scholz; Von Berlepsch R; Tomaž Zwitter; U. Jauregi; L. Mijovic; Daniel J. Eisenstein; Fred G. Watson; Quentin A. Parker; D. Burton; Cjp Cass; J. A. Dawe; Kristin Fiegert; Malcolm Hartley; K. S. Russell; Will Saunders; Joss Bland-Hawthorn; Kenneth C. Freeman; Megan Williams; Ulisse Munari; Massimo Fiorucci; A. Siviero; R. Sordo; R. Campbell; George M. Seabroke; G. Gilmore
We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R 1⁄4 7500) in the Ca-triplet region (8410–8795 8) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is 4760 deg. The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s . Combining internal errors and zero-point errors, the mode is found to be 2 km s . Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s . We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the TwoMicron All Sky Survey). The data release can be accessed via the RAVE Web site.
Monthly Notices of the Royal Astronomical Society | 2004
D. Heath Jones; Will Saunders; Matthew Colless; Mike Read; Quentin A. Parker; Fred G. Watson; Lachlan Campbell; Daniel Burkey; Tom Mauch; Lesa Moore; Malcolm Hartley; Paul Cass; Dionne James; K. S. Russell; Kristin Fiegert; J. A. Dawe; John P. Huchra; T. H. Jarrett; Ofer Lahav; John R. Lucey; Gary A. Mamon; Dominique Proust; Elaine M. Sadler; Ken-Ichi Wakamatsu
The 6dF Galaxy Survey (6dFGS) aims to measure the redshifts of around 150 000 galaxies, and the peculiar velocities of a 15 000-member subsample, over almost the entire southern sky. When complete, it will be the largest redshift survey of the nearby Universe, reaching out to about z similar to 0.15, and more than an order of magnitude larger than any peculiar velocity survey to date. The targets are all galaxies brighter than K-tot = 12.75 in the 2MASS Extended Source Catalog (XSC), supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, r(F), b(J)) = (13.05, 13.75, 15.6, 16.75). Central to the survey is the Six-Degree Field (6dF) multifibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7-field of the UK Schmidt Telescope. An adaptive tiling algorithm has been employed to ensure around 95 per cent fibring completeness over the 17 046 deg(2) of the southern sky with \b\ > 10degrees. Spectra are obtained in two observations using separate V and R gratings, that together give R similar to 1000 over at least 4000-7500 Angstrom and signal-to-noise ratio similar to10 per pixel. Redshift measurements are obtained semi-automatically, and are assigned a quality value based on visual inspection. The 6dFGS data base is available at http://www-wfau.roe.ac.uk/6dFGS/, with public data releases occurring after the completion of each third of the survey.
The Astronomical Journal | 2006
Arnaud Siebert; Megan Williams; A. Siviero; C. Boeche; M. Steinmetz; Jon P. Fulbright; Ulisse Munari; Tomaž Zwitter; Fred G. Watson; R. F. G. Wyse; R. S. de Jong; Harry Enke; Borja Anguiano; D. Burton; C. J. P. Cass; Kristin Fiegert; Malcolm Hartley; A. Ritter; K. S. Russel; M. Stupar; Olivier Bienayme; Kenneth C. Freeman; G. Gilmore; Eva K. Grebel; Amina Helmi; Julio F. Navarro; James Binney; Joss Bland-Hawthorn; R. Campbell; Benoit Famaey
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.
The Astronomical Journal | 2008
M. Steinmetz; Tomaž Zwitter; A. Siebert; Fred G. Watson; Kenneth C. Freeman; Ulisse Munari; R. Campbell; Megan Williams; George M. Seabroke; Rosemary F. G. Wyse; Q. A. Parker; Olivier Bienayme; S. Roeser; Brad K. Gibson; Gerard Gilmore; Eva K. Grebel; Julio F. Navarro; D. Burton; C. J. P. Cass; J. A. Dawe; Kristin Fiegert; Malcolm Hartley; K. S. Russell; Will Saunders; Harry Enke; Jeremy Bailin; James Binney; Joss Bland-Hawthorn; C. Boeche; Walter Dehnen
We present the second data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution specUniversity of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia Astrophysikalisches Institut Potsdam, Potsdam, Germany Observatoire de Strasbourg, Strasbourg, France INAF, Osservatorio Astronomico di Padova, Sede di Asiago, Italy RSAA, Australian national University, Canberra, Australia Anglo Australian Observatory, Sydney, Australia Johns Hopkins University, Baltimore MD, USA Macquarie University, Sydney, Australia Institute of Astronomy, University of Cambridge, UK e2v Centre for Electronic Imaging, School of Engineering and Design, Brunel University, Uxbridge, UK Astronomisches Rechen-Institut, Center for Astronomy of the University of Heidelberg, Heidelberg, Germany Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands University of Victoria, Victoria, Canada Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Australia Rudolf Pierls Center for Theoretical Physics, University of Oxford, UK Institute of Astronomy, School of Physics, University of Sydney, NSW 2006, Australia Sterrewacht Leiden, University of Leiden, Leiden, the Netherlands University of Leicester, Leicester, UK MPI fuer extraterrestrische Physik, Garching, Germany University of Central Lancashire, Preston, UK University of Rochester, Rochester NY, USA University of Edinburgh, Edinburgh, UK
Journal of Astronomical Telescopes, Instruments, and Systems | 2015
Andrew Sheinis; Borja Anguiano Jimenez; Martin Asplund; Carlos Bacigalupo; Samuel C. Barden; Michael N. Birchall; Joss Bland-Hawthorn; Jurek Brzeski; Russell D. Cannon; Daniela Carollo; Scott W. Case; Andrew R. Casey; Vladimir Churilov; Warrick J. Couch; Robert Dean; Gayandhi De Silva; V. D’Orazi; Ly Duong; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Gabriella Frost; Luke Gers; Michael Goodwin; Doug Gray; Andrew W. Green; Ron Heald; Jeroen Heijmans; Michael J. Ireland; Damien Jones
Abstract. The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.
Proceedings of SPIE | 2012
Jeroen Heijmans; Martin Asplund; Sam Barden; Michael N. Birchall; Daniela Carollo; Joss Bland-Hawthorn; Jurek Brzeski; Scott W. Case; Vladimir Churilov; Matthew Colless; Robert Dean; Gayandhi De Silva; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Luke Gers; Michael Goodwin; Doug Gray; Ron Heald; Anthony Heng; Damien Jones; Chiaki Kobayashi; Urs Klauser; Yuriy Kondrat; Jon Lawrence; Steve Lee; Darren Mathews; Stan Miziarski; Guy Monnet; Rolf Müller
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES spectrograph is given. This paper details the following specific topics: The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and software, data reduction.
Ground-based and Airborne Instrumentation for Astronomy VII | 2018
Vladimir Churilov; Ross Zhelem; Scott W. Case; Yuriy Kondrat; Lewis Waller; Jonathan Lawrence; Michael Edgar; Gabriella Baker; Kristin Fiegert; Michael Ireland
The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the Herzberg Institute for Astrophysics, National Research Council (HIA-NRC) in Canada, and the Australian National University. This paper describes the design of the fiber optic system, developed by AAO. This system links the GHOST multi-object positioner, mounted on Geminis Cassegrain focus, with the HIA-NRC developed spectrograph, located in the pier lab, 20 meters below the main observatory floor. The GHOST optical cable consists of 62 fibers, Polymicro FBP53/74/94P (53 μm core, 94 μm polyimide buffer), packed into 8 furcation tubes. The optical fibers are held inside the furcation tubes by friction, with between one and twelve fibers in each of the individual tubes. The furcation tubes are mechanically secured to manifold and anchor assemblies by bonding to integral Kevlar yarn within the tubing. The cable includes an interlock switch, linked to the telescope control system, to halt all telescope motions if the cable becomes overstressed. Fibers are terminated by two integral field units (IFU1 and IFU2), guiding and science slits and a calibration light entry port. Mode scrambling is achieved by mechanical agitation in two orthogonal directions, with adjustable frequency and amplitude of up to 10 Hz and 50 mm, respectively.
VizieR Online Data Catalog; 3272 (2014) | 2014
G. Kordopatis; G. Gilmore; M. Steinmetz; C. Boeche; G. M. Seabroke; A. Siebert; T. Zwitter; James Binney; P. de Laverny; A. Recio-Blanco; Megan Williams; Tilmann Piffl; Harry Enke; S. Roeser; A. Bijaoui; R. F. G. Wyse; Kenneth C. Freeman; Ulisse Munari; Ismael Carrillo; Borja Anguiano; D. Burton; R. Campbell; C. J. P. Cass; Kristin Fiegert; Malcolm Hartley; Quentin A. Parker; A. Ritter; K. S. Russell; M. Stupar; Fred G. Watson
VizieR Online Data Catalog | 2011
A. Siebert; Megan Williams; A. Siviero; C. Boeche; M. Steinmetz; Jon P. Fulbright; Ulisse Munari; T. Zwitter; Fred G. Watson; R. F. G. Wyse; R. S. de Jong; Harry Enke; Borja Anguiano; D. Burton; C. J. P. Cass; Kristin Fiegert; Malcolm Hartley; A. Ritter; K. S. Russel; M. Stupar; O. Bienaymé; Kenneth C. Freeman; G. Gilmore; Eva K. Grebel; Amina Helmi; Julio F. Navarro; James Binney; J. Bland-Hawthorn; R. Campbell; B. Famaey