Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Hamre is active.

Publication


Featured researches published by Kristin Hamre.


Aquatic Toxicology | 2014

Selenium and mercury have a synergistic negative effect on fish reproduction

Samuel Penglase; Kristin Hamre; Ståle Ellingsen

Selenium (Se) can reduce the negative impacts of mercury (Hg) toxicity on growth and survival, but little is known about how these two elements interact in reproduction. In the following study we explored the effects of organic Hg and Se on the growth, survival and reproduction of female zebrafish (Danio rerio). Fish were fed one of four diets from 73 until 226 dpf in a 2 × 2 factorial design, using selenomethionine (SeMet) and methylmercury (MeHg) as the Se and Hg sources, respectively. Each diet contained Se at either requirement (0.7 mg Se/kg DM) or elevated levels (10 mg Se/kgDM), and Hg at either low (0.05 mg Hg/kg DM) or elevated (12 mg Hg/kg DM) levels. Between 151 and 206 dpf the female fish were pairwise crossed against untreated male fish and the mating success, fecundity, embryo survival, and subsequent overall reproductive success were measured. Elevated dietary Se reduced Hg levels in both the adult fish and their eggs. Elevated dietary Hg and Se increased egg Se levels to a greater extent than when dietary Se was elevated alone. At elevated maternal intake levels, egg concentrations of Se and Hg reflected the maternal dietary levels and not the body burdens of the adult fish. Elevated dietary Hg reduced the growth and survival of female fish, but these effects were largely prevented with elevated dietary Se. Elevated dietary Se alone did not affect fish growth or survival. Compared to other treatments, elevated dietary Hg alone increased both mating and overall reproductive success with <100 days of exposure, but decreased these parameters with >100 days exposure. Elevated dietary Se decreased fecundity, embryo survival, and overall reproductive success. The combination of elevated Se and Hg had a synergistic negative effect on all aspects of fish reproduction compared to those groups fed elevated levels of either Se or Hg. Overall the data demonstrate that while increased dietary Se may reduce adverse effects of Hg on the growth and survival in adult fish, it can negatively affect fish reproductive potential, and the effect on reproduction is enhanced in the presence of elevated Hg.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2010

Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish

Anne-Katrine Lundebye; Helge T. Hove; A. Måge; V.J.B. Bohne; Kristin Hamre

Several synthetic antioxidants are authorized for use as feed additives in the European Union. Ethoxyquin (EQ) and butylated hydroxytoluene (BHT) are generally added to fish meal and fish oil, respectively, to limit lipid oxidation. The study was conducted to examine the concentrations of EQ, BHT and butylated hydroxyanisole (BHA) in several commercially important species of farmed fish, namely Atlantic salmon, halibut and cod and rainbow trout, as well as concentrations in fish feed. The highest levels of BHT, EQ and BHA were found in farmed Atlantic salmon fillets, and were 7.60, 0.17 and 0.07 mg kg−1, respectively. The lowest concentrations of the synthetic antioxidants found were in cod. The concentration of the oxidation product ethoxyquin dimer (EQDM) was more than ten-fold higher than the concentration of parent EQ in Atlantic salmon halibut and rainbow trout, whereas this dimer was not detected in cod fillets. The theoretical consumer exposure to the synthetic antioxidants EQ, BHA and BHT from the consumption of farmed fish was calculated. The contribution of EQ from a single portion (300 g) of skinned fillets of the different species of farmed fish would contribute at most 15% of the acceptable daily intake (ADI) for a 60 kg adult. The consumption of farmed fish would not contribute measurably to the intake of BHA; however, a 300 g portion of farmed Atlantic salmon would contribute up to 75% of the ADI for BHT.


Comparative Biochemistry and Physiology B | 2009

Evaluation of candidate reference genes in Q-PCR studies of Atlantic cod (Gadus morhua) ontogeny, with emphasis on the gastrointestinal tract

Øystein Sæle; Andreas Nordgreen; Kristin Hamre; Pål A. Olsvik

To obtain reliable relative qPCR data in developing fish larvae, stable reference genes have to be found. This study is focused on finding good candidates for normalization of qPCR data for ontogenetic studies of Atlantic cod. Ten commonly used reference genes; Acidic ribosomal protein, Actin-related protein 2, beta-actin, Elongation factor 1 A, Glyceraldehyde-3-phosphate dehydrogenase, Ribosomal protein 37, Ribosomal protein 4, Ribosomal protein S9, beta 2-Tubulin and Ubiquitin were analyzed in developing larvae from 3 to 97 day post hatch (DPH). Two different tools were used to evaluate the stabilities of these genes; the geNorm software ranks the most stable genes based on a pair-wise analysis whereas NormFinder uses a model-based approach. The same genes were also analyzed in GI tract homogenates and compared to whole larvae homogenates. During Atlantic cod larval development there are several strong candidates with Ubiquitin as the most stable. The ribosomal proteins RPL4 and RPS9 are also strong candidates. RPL37 may be used but only when normalizing qRT-PCR results from one type of tissue. We also suggest the use of multiple genes for normalization of qRT-PCR. Our study suggests that whole-larvae samples can be used to study relative expression of genes that are expressed only in certain tissues.


PeerJ | 2015

Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae — can we identify the underlying factors?

Ørjan Karlsen; Terje van der Meeren; Ivar Rønnestad; Anders Mangor-Jensen; Trine Falck Galloway; Elin Kjørsvik; Kristin Hamre

The current commercial production protocols for Atlantic cod depend on enriched rotifers and Artemia during first-feeding, but development and growth remain inferior to fish fed natural zooplankton. Two experiments were conducted in order to identify the underlying factors for this phenomenon. In the first experiment (Exp-1), groups of cod larvae were fed either (a) natural zooplankton, mainly copepods, increasing the size of prey as the larvae grew or (b) enriched rotifers followed by Artemia (the intensive group). In the second experiment (Exp-2), two groups of larvae were fed as in Exp-1, while a third group was fed copepod nauplii (approximately the size of rotifers) throughout the larval stage. In both experiments, growth was not significantly different between the groups during the first three weeks after hatching, but from the last part of the rotifer feeding period and onwards, the growth of the larvae fed copepods was higher than that of the intensive group. In Exp-2, the growth was similar between the two copepod groups during the expeimental period, indicating that nutrient composition, not prey size caused the better growth on copepods. Analyses of the prey showed that total fatty acid composition and the ratio of phospholipids to total lipids was slightly different in the prey organisms, and that protein, taurine, astaxanthin and zinc were lower on a dry weight basis in rotifers than in copepods. Other measured nutrients as DHA, all analysed vitamins, manganese, copper and selenium were similar or higher in the rotifers. When compared to the present knowledge on nutrient requirements, protein and taurine appeared to be the most likely limiting nutrients for growth in cod larvae fed rotifers and Artemia. Larvae fed rotifers/Artemia had a higher whole body lipid content than larvae fed copepods at the end of the experiment (stage 5) after the fish had been fed the same formulated diet for approximately 2 weeks.


Free Radical Biology and Medicine | 2014

Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury

Samuel Penglase; Kristin Hamre; Ståle Ellingsen

Selenium (Se) is an essential nutrient required by Se-dependent proteins, termed selenoproteins. The selenoprotein family is small but diverse and includes key proteins in antioxidant, redox signaling, thyroid hormone metabolism, and protein folding pathways. Methylmercury (MeHg) is a toxic environmental contaminant that affects seafood safety. Selenium can reduce MeHg toxicity, but it is unclear how selenoproteins are affected in this interaction. In this study we explored how Se and MeHg interact to affect the mRNA expression of selenoprotein genes in whole zebrafish (Danio rerio) embryos. Embryos were obtained from adult zebrafish fed MeHg with or without elevated Se in a 2×2 factorial design. The embryo mRNA levels of 30 selenoprotein genes were then measured. These genes cover most of the selenoprotein families, including members of the glutathione peroxidase (GPX), thioredoxin reductase, iodothyronine deiodinase, and methionine sulfoxide reductase families, along with selenophosphate synthetase 2 and selenoproteins H, J-P, T, W, sep15, fep15, and fam213aa. GPX enzyme activity and larval locomotor activity were also measured. We found that around one-quarter of the selenoprotein genes were downregulated by elevated MeHg. These downregulated genes were dominated by selenoproteins from antioxidant pathways that are also susceptible to Se-deficiency-induced downregulation. MeHg also decreased GPX activity and induced larval hypoactivity. Elevated Se partially prevented MeHg-induced disruption of selenoprotein gene mRNA levels, GPX activity, and larval locomotor activity. Overall, the MeHg-induced downregulation and subsequent rescue by elevated Se levels of selenogenes regulated by Se status suggest that Se deficiency is a contributing factor to MeHg toxicity.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions

Kaja H. Skjærven; Pål A. Olsvik; Roderick Nigel Finn; Elisabeth Holen; Kristin Hamre

The embryonic stages of Atlantic cod (Gadus morhua) are especially sensitive to incubation temperature. The purpose of the present study was to follow the ontogenetic expression of selected genes of maternal (pou2 and nanog) and zygotic origin (hsp70, hsp90α and stip1), in Atlantic cod embryos under ambient and thermally stressed conditions. The study also investigated how reference genes can be applied to studies on embryonic development, when maternal genes are degraded and the zygotic transcription stabilizes. Three batches of eggs were reared and gene expression profiles from the reference and target genes were determined. The embryos were reared at ambient 6 °C, and 10 °C for continuous long-term and acute short-term heat exposure. Both pou2 and nanog showed reduced expression whereas the zygotic and reference genes showed increased expression until stabilizing at gastrulation, when a normalized ontogenetic expression profile of target genes could be generated. pou2 and nanog were not affected by thermal stress. In contrast, hsp70 and hsp90α were upregulated after short-term heat exposure at the early blastula (hsp70 only), late blastula, 50% epiboly and 90% epiboly stages (hsp90α only). Long-term heat exposure of Atlantic cod embryos upregulated both hsp70 (90% epiboly) and hsp90α (90% epiboly and 20-somites). The results suggest that a cellular defense mechanism is activated even in the earliest stages of embryonic development, a period critical to developmental temperature.


British Journal of Nutrition | 2011

Characterisation and expression of secretory phospholipase A2 group IB during ontogeny of Atlantic cod (Gadus morhua)

Øystein Sæle; Andreas Nordgreen; Pål A. Olsvik; Kristin Hamre

The pancreatic enzyme secretory phospholipase A2 group IB (sPLA2 IB) hydrolyses phospholipids at the sn-2 position, resulting in a NEFA and a lyso-phospholipid, which are then absorbed by the enterocytes. The sPLA2 IB is a member of a family of nineteen enzymes sharing the same catalytic ability, of which nine are cytosolic and ten are secretory. Presently, there are no pharmacological tools to separate between the different secretory enzymes when measuring the enzymatic activity. Thus, it is important to support activity data with more precise techniques when isolation of intestinal content is not possible for analysis, as in the case of small teleost larvae, where the whole animal is sometimes analysed. In the present study, we characterise the sPLA2 IB gene in Atlantic cod (Gadus morhua) and describe its ontogeny at the genetic and protein level and compare this to the total sPLA2 activity level. A positive correlation was found between the expression of sPLA2 IB mRNA and protein. Both remained stable and low during the larval stage followed by an increase from day 62 posthatch, coinciding with the development of the pyloric ceaca. Meanwhile, total sPLA2 enzyme activity in cod was stable and relatively high during the early stages when larvae were fed live prey, followed by a decrease in activity when the fish were weaned to a formulated diet. Thus, the expression of sPLA2 IB mRNA and protein did not correlate with total sPLA2 activity.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014

Thermal stress alters expression of genes involved in one carbon and DNA methylation pathways in Atlantic cod embryos

Kaja H. Skjærven; Kristin Hamre; Samuel Penglase; Roderick Nigel Finn; Pål A. Olsvik

One-carbon (1-C) metabolism is essential for normal embryonic development through its regulation of DNA methylation and cell proliferation. With consideration to the potential future anthropogenic oceanic warming, we studied the effects of both acute thermal stress and continuous thermal stress (10°C) during Atlantic cod embryo development on the expression levels of genes associated with the 1-C metabolism, including DNA methyltransferases. We conducted a phylogenetic analysis of vertebrate DNA methyltransferases to determine the number and similarity of DNMT found in Atlantic cod. This analysis revealed that Atlantic cod have one maintenance dnmt (dnmt1) and five de novo DNMTs (dnmt4, dnmt3, dnmt3b, dnmt3aa, dnmt3ab). Stage specific changes in expression levels occurred for all genes analyzed. The effect of acute thermal stress was evaluated during early development. Compared to controls these experiments showed significant alterations in expression levels of several genes, that in some instances were reversed at later stages of development. A significant effect of continuous thermal stress was found in gastrula embryos where lower mRNA expression levels of 1-C metabolism, de novo DNMTs and cell proliferation genes were detected. One exception was the maintenance DNMT, which was only sensitive to acute and not continuous thermal stress. DNA methylation status indicated that blastula embryos were hypomethylated compared to spermatozoa and late gastrula stages. In post-gastrula stage, however, continuous thermal stress resulted in a higher degree of DNA methylation compared to controls. These data reveal that the regulation of epigenetically important transcripts in the 1-C metabolism of Atlantic cod embryos is sensitive to thermal stress.


Fish Physiology and Biochemistry | 2003

Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus

E. Holen; Kristin Hamre

Culturing pluripotent embryonic stem cells represents a unique model system for in vitro studies of embryo cell growth and differentiation, and represents a connection between in vitro and in vivo manipulation of genes. To further develop and refine stem cell technology for marine fish, we have established cultures of embryonic stem cells isolated from turbot blastulas. The pluripotent nature of our turbot-ES-like cells was supported by their morphology and elevated levels of alkaline phosphatase enzyme activity, their ability to remain undifferentiated for a prolonged culture period, their spontaneous differentiation potential in vitro and their ability to form embryoid bodies (EB) in response to changes in the extracellular environment. In addition, we show that turbot ES like cells express Oct-4 required for the maintenance of pluripotency of ES cells.Cells from 100 blastulas (>105 cells/well) were seeded into gelatine coated 24 well cell culture clusters. The cells were polygonal in shape, with dense cytoplasm and large nuclei. The ES-like cells formed colonies within 24 h following seeding, multilayered in a pyramidal fashion, with maximum cell densities in the middle. The cells proliferated vigorously when seeding densities were high and the cells still had not attached to the gelatine-coated surface. Most of the cells became attached to the surface 48 h following seeding. Attached cells grew more slowly and 20% of the plated colonies could be kept stable for 60 days. Eventually, most of the cultures showed extensive differentiation or died. Only a few cultures (4–5%) survived prolonged culturing (>2 months). The cells were stained for alkaline phosphatase activity, a marker of pluripotency and showed intense staining. More specific, turbot ES like cells in culture expressed Oct-4, detected by immunofluorescence staining.Changing the medium conditions by adding retinoic acid and removing LIF, the proportion of embryoid bodies in our cultures increased. ES-like cells as well as fresh, intact fertilised eggs where successfully cryopreserved. ES cells from the cryopreserved eggs could be isolated and seeded into cultures, forming colonies like the cells from freshly fertilised eggs. Also cryopreserved ES-like cells could be successfully plated. The prolonged survival of these cryopreserved cells has not yet been investigated. The establishment of in vitro cultures of turbot ES-like cells represents a new experimental model for marine flatfish.


Free Radical Biology and Medicine | 2013

Redox regulation in Atlantic cod (Gadus morhua) embryos developing under normal and heat-stressed conditions

Kaja H. Skjærven; Samuel Penglase; Pål A. Olsvik; Kristin Hamre

With regard to predicted oceanic warming, we studied the effects of heat stress on the redox system during embryonic development of Atlantic cod (Gadus morhua), with emphasis on the glutathione balance, activities of key antioxidant enzymes, and their mRNA levels. The embryos were incubated at optimal temperature for development (6 °C) or slightly above the threshold temperature (10 °C). The regulation of all the redox-related parameters measured at optimum development was highly dynamic and complex, indicating the importance of both maternal and zygotic contributions to maintaining redox equilibrium. Development at 10 °C caused a significantly higher mortality at the blastula and early gastrula stages, indicating severe stress. Measures of the glutathione redox couple showed a significantly more reduced state in embryos at 10 °C compared to 6 °C at the post-gastrula stages. Mean normalized expression of nrf2, trxred, g6pd, gclc, nox1, CuZnsod, and mt in embryos kept at 10 °C revealed stage-specific significantly reduced mRNA levels. Activities of antioxidant enzymes changed both during ontogenesis and in response to temperature, but did not correlate with mRNA levels. As the embryos need a tightly regulated redox environment to coordinate between growth and differentiation, these findings suggest that the altered redox balance might participate in inducing phenotypic changes caused by elevated temperature.

Collaboration


Dive into the Kristin Hamre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Yúfera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Augustine Arukwe

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge