Kristin Hegstad
University Hospital of North Norway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin Hegstad.
Microbial Drug Resistance | 2010
Kristin Hegstad; Solveig Langsrud; Bjørn Tore Lunestad; Anne Aamdal Scheie; Marianne Sunde; Siamak Pour Yazdankhah
Quaternary ammonium compounds (QACs) are widely used biocides that possess antimicrobial effect against a broad range of microorganisms. These compounds are used for numerous industrial purposes, water treatment, antifungal treatment in horticulture, as well as in pharmaceutical and everyday consumer products as preserving agents, foam boosters, and detergents. Resistance toward QACs is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as modifications in the membrane composition, expression of stress response and repair systems, or expression of efflux pump genes. Development of resistance in both pathogenic and nonpathogenic bacteria has been related to application in human medicine and the food industry. QACs in cosmetic products will inevitably come into intimate contact with the skin or mucosal linings in the mouth and thus are likely to add to the selection pressure toward more QAC-resistant microorganisms among the skin or mouth flora. There is increasing evidence of coresistance and cross-resistance between QACs and a range of other clinically important antibiotics and disinfectants. Use of QACs may have driven the fixation and spread of certain resistance cassette collectors (class 1 integrons), currently responsible for a major part of antimicrobial resistance in gram-negative bacteria. More indiscriminate use of QACs such as in cosmetic products may drive the selection of further new genetic elements that will aid in the persistence and spread of antimicrobial resistance and thus in limiting our treatment options for microbial infections.
Clinical Microbiology and Infection | 2010
Kristin Hegstad; Theresa Mikalsen; Teresa M. Coque; Guido Werner; Arnfinn Sundsfjord
Mobile genetic elements (MGEs) including plasmids and transposons are pivotal in the dissemination and persistence of antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium. Enterococcal MGEs have also been shown to be able to transfer resistance determinants to more pathogenic bacteria such as Staphylococcus aureus. Despite their importance, we have a limited knowledge about the prevalence, distribution and genetic content of specific MGEs in enterococcal populations. Molecular epidemiological studies of enterococcal MGEs have been hampered by the lack of standardized molecular typing methods and relevant genome information. This review focuses on recent developments in the detection of MGEs and their contribution to the spread of antimicrobial resistance in clinically relevant enterococci.
Apmis | 2009
Umaer Naseer; Bjørg Haldorsen; Ståle Tofteland; Kristin Hegstad; Flemming Scheutz; Gunnar Skov Simonsen; Arnfinn Sundsfjord
Nationwide, CTX‐M‐producing clinical Escherichia coli isolates from the Norwegian ESBL study in 2003 (n=45) were characterized on strain and plasmid levels. BlaCTX‐M allele typing, characterization of the genetic environment, phylogenetic groups, pulsed field gel electrophoresis (PFGE), serotyping and multilocus sequence typing were performed. Plasmid analysis included S1‐nuclease‐PFGE, polymerase chain reaction‐based replicon typing, plasmid transfer and multidrug resistance profiling. BlaCTX‐M‐15 (n=23; 51%) and blaCTX‐M‐14 (n=11; 24%) were the major alleles of which 18 (78%) and 6 (55%), respectively, were linked to ISEcp1. Thirty‐two isolates were of phylogenetic groups B2 and D. Isolates were of 29 different XbaI‐PFGE‐types including six regional clusters. Twenty‐three different O:H serotypes were found, dominated by O25:H4 (n=9, 20%) and O102:H6 (n=9, 20%). Nineteen different STs were identified, where ST131 (n=9, 20%) and ST964 (n=7, 16%) were dominant. BlaCTX‐M was found on ≥100 kb plasmids (39/45) of 10 different replicons dominated by IncFII (n=39, 87%), FIB (n=20, 44%) and FIA (n=19, 42%). Thirty‐nine isolates (87%) displayed co‐resistance to other classes of antibiotics. A transferable CTX‐M phenotype was observed in 9/14 isolates. This study reveals that the majority of CTX‐M‐15‐expressing strains in Norway are part of the global spread of multidrug‐resistant ST131 and ST‐complex 405, associated with ISEcp1 on transferrable IncFII plasmids.
Journal of Antimicrobial Chemotherapy | 2011
Nabil Karah; Bjørg Haldorsen; Kristin Hegstad; Gunnar Skov Simonsen; Arnfinn Sundsfjord; Ørjan Samuelsen
OBJECTIVES The study investigated the species distribution, antibiotic susceptibility patterns and genotypic resistance characteristics of 113 consecutive blood culture isolates of Acinetobacter species collected between 2005 and 2007 throughout Norway. METHODS Species identification was performed by partial rpoB sequence analysis, and verified by 16S rDNA and recA sequence analyses. Susceptibility testing was performed by agar disc diffusion and Etest. Distribution of OXA carbapenemase genes and epidemic clonality of Acinetobacter baumannii isolates were detected by PCR assays. Analyses of blaOXA-51-like variants and quinolone resistance-determining regions (QRDRs) were done by sequencing. RESULTS The most prevalent species in the collection were Acinetobacter genomic species (gen. sp.) 13TU (46.9%) and Acinetobacter gen. sp. 3 (19.5%), followed by A. baumannii (8.8%) and Acinetobacter lwoffii/Acinetobacter gen. sp. 9 (7.1%). Carbapenem resistance was observed in one blaOXA-23-like-positive A. baumannii isolate. Quinolone resistance was detected in five isolates from the Acinetobacter calcoaceticus-A. baumannii complex, of which two had point mutations in the QRDRs, including one novel ParC mutation. None of the A. baumannii isolates belonged to European/international clones I, II or III. Six blaOXA-51-like variants, including two novel variants, were identified. CONCLUSIONS Acinetobacter gen. sp. 13TU and Acinetobacter gen. sp. 3 were predominant in Norwegian blood cultures, in contrast to in other countries where A. baumannii has dominated. The study demonstrated the importance of genotypic identification to determine the exact epidemiology of non-baumannii Acinetobacter species.
International Journal of Medical Microbiology | 2013
Guido Werner; Teresa M. Coque; Charles M.A.P. Franz; Elisabeth Grohmann; Kristin Hegstad; Lars Bogø Jensen; Willem van Schaik; Keith E. Weaver
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
BMC Genomics | 2015
Theresa Mikalsen; Torunn Pedersen; Rob J. L. Willems; Teresa M. Coque; Guido Werner; Eva Sadowy; Willem van Schaik; Lars Bogø Jensen; Arnfinn Sundsfjord; Kristin Hegstad
BackgroundThe success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses.ResultsThe hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep17/pRUM, rep2/pRE25, rep14/EFNP1 and rep20/pLG1 dominating in E. faecium and rep9/pCF10, rep2/pRE25 and rep7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented.ConclusionsThe targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Apmis | 2011
Eva katrin Bjørkeng; Gunlög Rasmussen; Arnfinn Sundsfjord; Lennart Sjöberg; Kristin Hegstad; Bo Söderquist
Bjørkeng E, Rasmussen G, Sundsfjord A, Sjöberg L, Hegstad K, Söderquist B. Clustering of polyclonal VanB‐type vancomycin‐resistant Enterococcus faecium in a low‐endemic area was associated with CC17‐genogroup strains harbouring transferable vanB2‐Tn5382 and pRUM‐like repA containing plasmids with axe‐txe plasmid addiction systems. APMIS 2011; 119: 247–58.
PLOS ONE | 2014
Audun Sivertsen; Hanna Billström; Öjar Melefors; Barbro Olsson Liljequist; Karin Tegmark Wisell; Måns Ullberg; Volkan Özenci; Arnfinn Sundsfjord; Kristin Hegstad
The clonal dissemination of VanB-type vancomycin-resistant Enterococcus faecium (VREfm) strains in three Swedish hospitals between 2007 and 2011 prompted further analysis to reveal the possible origin and molecular characteristics of the outbreak strain. A representative subset of VREfm isolates (n = 18) and vancomycin-susceptible E. faecium (VSEfm, n = 2) reflecting the spread in time and location was approached by an array of methods including: selective whole genome sequencing (WGS; n = 3), multi locus sequence typing (MLST), antimicrobial susceptibility testing, virulence gene profiling, identification of mobile genetic elements conferring glycopeptide resistance and their ability to support glycopeptide resistance transfer. In addition, a single VREfm strain with an unrelated PFGE pattern collected prior to the outbreak was examined by WGS. MLST revealed a predominance of ST192, belonging to a hospital adapted high-risk lineage harbouring several known virulence determinants (n≥10). The VREfm outbreak strain was resistant to ampicillin, gentamicin, ciprofloxacin and vancomycin, and susceptible to teicoplanin. Consistently, a vanB2-subtype as part of Tn1549/Tn5382 with a unique genetic signature was identified in the VREfm outbreak strains. Moreover, Southern blot hybridisation analyses of PFGE separated S1 nuclease-restricted total DNAs and filter mating experiments showed that vanB2-Tn1549/Tn5382 was located in a 70-kb sized rep 17/pRUM plasmid readily transferable between E. faecium. This plasmid contained an axe-txe toxin-antitoxin module associated with stable maintenance. The two clonally related VSEfm harboured a 40 kb rep 17/pRUM plasmid absent of the 30 kb vanB2-Tn1549/Tn5382 gene complex. Otherwise, these two isolates were similar to the VREfm outbreak strain in virulence- and resistance profile. In conclusion, our observations support that the origin of the multicentre outbreak was caused by an introduction of vanB2-Tn1549/Tn5382 into a rep 17/pRUM plasmid harboured in a pre-existing high-risk E. faecium ST192 clone. The subsequent dissemination of VREfm to other centres was primarily caused by clonal spread rather than plasmid transfer to pre-existing high-risk clones.
Journal of Clinical Microbiology | 2014
Kristin Hegstad; Christian G. Giske; Bjørg Haldorsen; Erika Matuschek; Kristian Schønning; Truls Michael Leegaard; Gunnar Kahlmeter; Arnfinn Sundsfjord
ABSTRACT Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n = 28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n = 12) and Enterococcus faecium (n = 18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n = 5), Norwegian (n = 13), and Swedish (n = 10) laboratories using the EUCAST disk diffusion method (n = 28) and the CLSI agar screen (n = 18) or the Vitek 2 system (bioMérieux) (n = 5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P = 0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P < 0.0001) or Merck Mueller-Hinton (MH) agar (P = 0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P = 0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges.
Journal of Bacteriology | 2013
Eva katrin Bjørkeng; Erik Hjerde; Torunn Pedersen; Arnfinn Sundsfjord; Kristin Hegstad
A 94-kb integrative conjugative element (ICESluvan) transferable to Enterococcus faecium and Enterococcus faecalis from an animal isolate of Streptococcus lutetiensis consists of a mosaic of genetic fragments from different Gram-positive bacteria. A variant of ICESluvan was confirmed in S. lutetiensis from a patient. A complete Tn5382/Tn1549 with a vanB2 operon is integrated into a streptococcal ICESde3396-like region harboring a putative bacteriophage exclusion system, a putative agglutinin receptor precursor, and key components of a type IV secretion system. Moreover, ICESluvan encodes a putative MobC family mobilization protein and a relaxase and, thus, in total has all genetic components essential for conjugative transfer. A 9-kb element within Tn5382/Tn1549 encodes, among others, putative proteins similar to the TnpX site-specific recombinase in Faecalibacterium and VanZ in Paenibacillus, which may contribute to the detected low-level teicoplanin resistance. Furthermore, ICESluvan encodes a novel bacitracin resistance locus that is associated with reduced susceptibility to bacitracin when transferred to E. faecium. The expression of a streptococcal pezAT toxin-antitoxin-encoding operon of ICESluvan in S. lutetiensis, E. faecium, and E. faecalis was confirmed by reverse transcription (RT)-PCR, indicating an active toxin-antitoxin system which may contribute to stabilizing ICESluvan within new hosts. Junction PCR and DNA sequencing confirmed that ICESluvan excised to form a circular intermediate in S. lutetiensis, E. faecalis, and E. faecium. Transfer between E. faecalis cells was observed in the presence of helper plasmid pIP964. Sequence analysis of the original S. lutetiensis donor and enterococcal transconjugants showed that ICESluvan integrates in a site-specific manner into the C-terminal end of the chromosomal tRNA methyltransferase gene rumA.