Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin J Hope is active.

Publication


Featured researches published by Kristin J Hope.


Nature Medicine | 2006

Targeting of CD44 eradicates human acute myeloid leukemic stem cells.

Liqing Jin; Kristin J Hope; Qiongli Zhai; Florence Smadja-Joffe; John E. Dick

The long-term survival of patients with acute myeloid leukemia (AML) is dismally poor. A permanent cure of AML requires elimination of leukemic stem cells (LSCs), the only cell type capable of initiating and maintaining the leukemic clonal hierarchy. We report a therapeutic approach using an activating monoclonal antibody directed to the adhesion molecule CD44. In vivo administration of this antibody to nonobese diabetic-severe combined immune-deficient mice transplanted with human AML markedly reduced leukemic repopulation. Absence of leukemia in serially transplanted mice demonstrated that AML LSCs are directly targeted. Mechanisms underlying this eradication included interference with transport to stem cell–supportive microenvironmental niches and alteration of AML-LSC fate, identifying CD44 as a key regulator of AML LSCs. The finding that AML LSCs require interaction with a niche to maintain their stem cell properties provides a therapeutic strategy to eliminate quiescent AML LSCs and may be applicable to other types of cancer stem cells.


Nature Immunology | 2004

Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.

Kristin J Hope; Liqing Jin; John E. Dick

Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic–severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.


Oncogene | 2004

Concepts of human leukemic development

Jennifer K Warner; Jean C.Y. Wang; Kristin J Hope; Liqing Jin; John E. Dick

Two fundamental problems in cancer research are identification of the normal cell within which cancer initiates and identification of the cell type capable of sustaining the growth of the neoplastic clone. There is overwhelming evidence that virtually all cancers are clonal and represent the progeny of a single cell. What is less clear for most cancers is which cells within the tumor clone possess tumorigenic or ‘cancer stem cell’ (CSC) properties and are capable of maintaining tumor growth. The concept that only a subpopulation of rare CSC is responsible for maintenance of the neoplasm emerged nearly 50 years ago. Testing of this hypothesis is most advanced for the hematopoietic system due to the establishment of functional in vitro and in vivo assays for stem and progenitor cells at all stages of development. This body of work led to conclusive proof for CSC with the identification and purification of leukemic stem cells capable of repopulating NOD/SCID mice. This review will focus on the historical development of the CSC hypothesis, the mechanisms necessary to subvert normal developmental programs, and the identification of the cell in which these leukemogenic events first occur.


Cell Stem Cell | 2010

An RNAi Screen Identifies Msi2 and Prox1 as Having Opposite Roles in the Regulation of Hematopoietic Stem Cell Activity

Kristin J Hope; Sonia Cellot; Stephen B. Ting; Tara MacRae; Nadine Mayotte; Norman N. Iscove; Guy Sauvageau

In this study, we describe an in vivo RNA interference functional genetics approach to evaluate the role of 20 different conserved polarity factors and fate determinants in mouse hematopoietic stem cell (HSC) activity. In total, this screen revealed three enhancers and one suppressor of HSC-derived reconstitution. Pard6a, Prkcz, and Msi2 shRNA-mediated depletion significantly impaired HSC repopulation. An in vitro promotion of differentiation was observed after the silencing of these genes, consistent with their function in regulating HSC self-renewal. Conversely, Prox1 knockdown led to in vivo accumulation of primitive and differentiated cells. HSC activity was also enhanced in vitro when Prox1 levels were experimentally reduced, identifying it as a potential antagonist of self-renewal. HSC engineered to overexpress Msi2 or Prox1 showed the reverse phenotype to those transduced with corresponding shRNA vectors. Gene expression profiling studies identified a number of known HSC and cell cycle regulators as potential downstream targets to Msi2 and Prox1.


Blood | 2011

RNA-seq analysis of 2 closely related leukemia clones that differ in their self-renewal capacity

Brian T. Wilhelm; Mathieu Briau; Pamela Austin; Amélie Faubert; Geneviève Boucher; Pierre Chagnon; Kristin J Hope; Simon Girard; Nadine Mayotte; Josette-Renée Landry; Josée Hébert; Guy Sauvageau

The molecular mechanisms regulating self-renewal of leukemia stem cells remain poorly understood. Here we report the generation of 2 closely related leukemias created through the retroviral overexpression of Meis1 and Hoxa9. Despite their apparent common origin, these clonal leukemias exhibit enormous differences in stem cell frequency (from 1 in 1.4, FLA2; to 1 in 347, FLB1), suggesting that one of these leukemias undergoes nearly unlimited self-renewal divisions. Using next-generation RNA-sequencing, we characterized the transcriptomes of these phenotypically similar, but biologically distinct, leukemias, identifying hundreds of differentially expressed genes and a large number of structural differences (eg, alternative splicing and promoter usage). Focusing on ligand-receptor pairs, we observed high expression levels of Sdf1-Cxcr4; Jagged2-Notch2/1; Osm-Gp130; Scf-cKit; and Bmp15-Tgfb1/2. Interestingly, the integrin beta 2-like gene (Itgb2l) is both highly expressed and differentially expressed between our 2 leukemias (∼ 14-fold higher in FLA2 than FLB1). In addition, gene ontology analysis indicated G-protein-coupled receptor had a much higher proportion of differential expression (22%) compared with other classes (∼ 5%), suggesting a potential role regulating subtle changes in cellular behavior. These results provide the first comprehensive transcriptome analysis of a leukemia stem cell and document an unexpected level of transcriptome variation between phenotypically similar leukemic cells.


Blood | 2012

Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2

Stephen B. Ting; Eric Deneault; Kristin J Hope; Sonia Cellot; Jalila Chagraoui; Nadine Mayotte; Jonas F. Dorn; Jean-Philippe Laverdure; Michael Harvey; Edwin D. Hawkins; Sarah M. Russell; Paul S. Maddox; Norman N. Iscove; Guy Sauvageau

The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.


Nature | 2016

Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells

Stefan Rentas; Nicholas Holzapfel; Muluken S. Belew; Gabriel A. Pratt; Veronique Voisin; Brian T. Wilhelm; Gary D. Bader; Gene W. Yeo; Kristin J Hope

Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2–RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs.


Blood | 2013

RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity

Sonia Cellot; Kristin J Hope; Jalila Chagraoui; Martin Sauvageau; Eric Deneault; Tara MacRae; Nadine Mayotte; Brian T. Wilhelm; Josette Renée Landry; Stephen B. Ting; Jana Krosl; Keith Humphries; Alexander Thompson; Guy Sauvageau

Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members that target mono-, di-, and trimethylated lysine residues of histone (or nonhistone) proteins. To evaluate their role in regulation of hematopoietic stem cell (HSC) behavior, we performed an in vivo RNAi-based functional screen and demonstrated that Jarid1b and Jhdm1f play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSCs with preserved long-term in vivo lymphomyeloid differentiation potential. Through RNA sequencing analysis, Jarid1b knockdown was associated with increased expression levels of several HSC regulators (Hoxa7, Hoxa9, Hoxa10, Hes1, Gata2) and reduced levels of differentiation-associated genes. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative regulator of HSC activity and Jhdmlf as a positive regulator of HSC activity.


Journal of Experimental Medicine | 2012

A role for GPx3 in activity of normal and leukemia stem cells

Olivier Hérault; Kristin J Hope; Eric Deneault; Nadine Mayotte; Jalila Chagraoui; Brian T. Wilhelm; Sonia Cellot; Martin Sauvageau; Miguel A. Andrade-Navarro; Josée Hébert; Guy Sauvageau

High levels of glutathione peroxidase 3 (GPx3) expression correlate with adverse prognosis in acute myeloid leukemia, and enhance activity of long-term repopulating hematopoietic stem cells in mice.


Current Opinion in Hematology | 2011

Roles for MSI2 and PROX1 in hematopoietic stem cell activity

Kristin J Hope; Guy Sauvageau

Purpose of reviewThe MSI2 and PROX1 proteins are increasingly recognized for their critical roles in the biology of primitive hematopoietic cells and for their potential contributions to leukemic pathogenesis. Here we summarize the studies that have shed light on the hematopoietic-specific roles of MSI2 and PROX1 and give an overview of the molecular mechanisms underlying their function. Recent findingsIn addition to a likely role in cell cycle restraint, the hematopoietic stem cell agonist MSI2 is essential for the maintenance of primitive cell fate through ensuring appropriate balance between self-renewal and differentiation. Overexpression of Msi2 can contribute to the progression of murine myeloid leukemia and in the human setting is associated with poor prognosis. Regulatory control imposed by MSI2 may be achieved partly through regulation of the Notch signaling pathway. Prox1 behaves in an opposing manner to Msi2, resulting in elevated stem cell numbers when depleted. It has a potential role in cell cycle control and may act at the level of primitive hematopoietic stem and progenitor cells as it does in other systems by directly promoting commitment and differentiation. PROX1 functions as a tumor suppressor in numerous tissue types and has been found mutated in hematopoietic cell lines and primary blood malignancies. SummaryDeciphering the molecular mechanisms through which MSI2 and PROX1 affect primitive hematopoietic cell fate will provide insight into the regulation of normal hematopoiesis and facilitate better understanding of the leukemic transformation process. This will be directly applicable to the development of effective regenerative therapies and targeted leukemia treatments.

Collaboration


Dive into the Kristin J Hope's collaboration.

Top Co-Authors

Avatar

Guy Sauvageau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

John E. Dick

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Sonia Cellot

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Nadine Mayotte

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Liqing Jin

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Deneault

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Minden

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge