Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin K. Madsen is active.

Publication


Featured researches published by Kristin K. Madsen.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


The Astrophysical Journal | 2012

Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS

Daniel Stern; Roberto J. Assef; Dominic J. Benford; A. W. Blain; Roc Michael Cutri; Arjun Dey; Peter R. M. Eisenhardt; Roger L. Griffith; T. H. Jarrett; Sean Lake; Frank J. Masci; Sara Petty; S. A. Stanford; Chao-Wei Tsai; E. L. Wright; Lin Yan; Fiona A. Harrison; Kristin K. Madsen

The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1-W2 \geq 0.8 (i.e., [3.4]-[4.6] \geq 0.8, Vega), which identifies 61.9 \pm 5.4 AGN candidates per deg2 to a depth of W2 = 15.0. This implies a much larger census of luminous AGN than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGN. Optical and soft X-ray surveys alone are highly biased towards only unobscured AGN, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGN. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 uJy at 4.6 microns, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. (2005) and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.


The Astrophysical Journal | 2013

NuSTAR DISCOVERY OF A 3.76 s TRANSIENT MAGNETAR NEAR SAGITTARIUS A

Kaya Mori; E. V. Gotthelf; Shuo Zhang; Hongjun An; F. K. Baganoff; Andrei M. Beloborodov; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Francois Dufour; Brian W. Grefenstette; Charles J. Hailey; Fiona A. Harrison; JaeSub Hong; Victoria M. Kaspi; J. A. Kennea; Kristin K. Madsen; Craig B. Markwardt; Melania Nynka; Daniel Stern; John A. Tomsick; William W. Zhang

We report the discovery of 3.76 s pulsations from a new burst source near Sgr A^* observed by the NuSTAR observatory. The strong signal from SGR J1745–29 presents a complex pulse profile modulated with pulsed fraction 27% ± 3% in the 3-10 keV band. Two observations spaced nine days apart yield a spin-down rate of Ṗ =(6.5 ± 1.4) × 10^(–12). This implies a magnetic field B = 1.6 × 10^(14) G, spin-down power Ė =5 × 10^(33) erg s^(–1), and characteristic age P/2Ṗ =9 × 10^3 yr for the rotating dipole model. However, the current Ṗ may be erratic, especially during outburst. The flux and modulation remained steady during the observations and the 3-79 keV spectrum is well fitted by a combined blackbody plus power-law model with temperature kT_(BB) = 0.96 ± 0.02 keV and photon index Γ = 1.5 ± 0.4. The neutral hydrogen column density (N_H ~ 1.4 × 10^(23) cm^(–2)) measured by NuSTAR and Swift suggests that SGR J1745–29 is located at or near the Galactic center. The lack of an X-ray counterpart in the published Chandra survey catalog sets a quiescent 2-8 keV luminosity limit of L_x ≾ 10^(32) erg s^(–1). The bursting, timing, and spectral properties indicate a transient magnetar undergoing an outburst with 2-79 keV luminosity up to 3.5 × 10^(35) erg s^(–1) for a distance of 8 kpc. SGR J1745–29 joins a growing subclass of transient magnetars, indicating that many magnetars in quiescence remain undetected in the X-ray band or have been detected as high-B radio pulsars. The peculiar location of SGR J1745–29 has important implications for the formation and dynamics of neutron stars in the Galactic center region.


Astrophysical Journal Supplement Series | 2015

CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

Kristin K. Madsen; Fiona A. Harrison; Craig B. Markwardt; Hongjun An; Brian W. Grefenstette; Matteo Bachetti; Hiromasa Miyasaka; Takao Kitaguchi; Varun Bhalerao; S. E. Boggs; Finn Erland Christensen; William W. Craig; Karl Forster; F. Fuerst; Charles J. Hailey; Matteo Perri; S. Puccetti; V. Rana; Daniel Stern; D. J. Walton; Niels Jørgen Stenfeldt Westergaard; William W. Zhang

We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ~10% for all instruments with respect to NuSTAR.


The Astrophysical Journal | 2013

The Ultraluminous X-Ray Sources NGC 1313 X-1 and X-2: A Broadband Study with NuSTAR and XMM-Newton

Matteo Bachetti; V. Rana; D. J. Walton; Didier Barret; Fiona A. Harrison; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Andrew C. Fabian; Felix Fürst; Brian W. Grefenstette; Charles J. Hailey; Ann Hornschemeier; Kristin K. Madsen; Jon M. Miller; Andrew F. Ptak; Daniel Stern; Natalie A. Webb; William W. Zhang

We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ~0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.


Proceedings of SPIE | 2010

The Nuclear Spectroscopic Telescope Array (NuSTAR)

Fiona A. Harrison; S. E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; Daniel Stern; William W. Zhang; Lorella Angelini; Hongjun An; Varun Bhalerao; Nicolai F. Brejnholt; Lynn R. Cominsky; W. Rick Cook; Melania Doll; P. Giommi; Brian W. Grefenstette; A. Hornstrup; V. M. Kaspi; Yunjin Kim; Takeo Kitaguchi; Jason E. Koglin; Carl Christian Liebe; Greg M. Madejski; Kristin K. Madsen; Peter H. Mao; David L. Meier; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining the explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a guest observer program will be proposed for an extended mission to expand the range of scientic targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto a solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit, NuSTAR largely avoids SAA passage, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.14-meter focal length through on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFCs High Energy Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.


The Astrophysical Journal | 2014

NuSTAR Observations of the Bullet Cluster: Constraints on Inverse Compton Emission

Daniel R. Wik; A. Hornstrup; S. Molendi; G. M. Madejski; Fiona A. Harrison; Andreas Zoglauer; Brian W. Grefenstette; F. Gastaldello; Kristin K. Madsen; Niels Jørgen Stenfeldt Westergaard; Desiree Della Monica Ferreira; Takao Kitaguchi; Kristian Pedersen; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; Daniel Stern; William W. Zhang

The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTARs unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well—but not perfectly—described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ~ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10^(–12) erg s^(–1) cm^(–2) (50-100 keV), implying a lower limit on B ≳ 0.2 μG, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.


The Astrophysical Journal | 2012

KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES

Julia M. Comerford; Brian F. Gerke; Daniel Stern; Michael C. Cooper; Benjamin J. Weiner; Jeffrey A. Newman; Kristin K. Madsen; R. Scott Barrows

Merger-remnant galaxies with kiloparsec (kpc) scale separation dual active galactic nuclei (AGNs) should be widespread as a consequence of galaxy mergers and triggered gas accretion onto supermassive black holes, yet very few dual AGNs have been observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan Digital Sky Survey (SDSS) are plausible dual AGN candidates, but their double-peaked profiles could also be the result of gas kinematics or AGN-driven outflows and jets on small or large scales. To help distinguish between these scenarios, we have obtained spatial profiles of the AGN emission via follow-up long-slit spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 ≤ z ≤ 0.36 using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit double AGN emission components with ~kpc projected spatial separations on the sky (0.2 h^(–1)_(70) kpc < Δx < 5.5 h^(–1)_(70) kpc; median Δx = 1.1 h^(–1)_(70) kpc), which suggests that they are produced by kiloparsec-scale dual AGNs or kiloparsec-scale outflows, jets, or rotating gaseous disks. Further, the objects split into two subpopulations based on the spatial extent of the double emission components and the correlation between projected spatial separations and line-of-sight velocity separations. These results suggest that the subsample (58^(+5)_(–6)%) of the objects with spatially compact emission components may be preferentially produced by dual AGNs, while the subsample (42^(+6)_(–5)%) with spatially extended emission components may be preferentially produced by AGN outflows. We also find that for 32^(+8)_(–6)% of the sample the two AGN emission components are preferentially aligned with the host galaxy major axis, as expected for dual AGNs orbiting in the host galaxy potential. Our results both narrow the list of possible physical mechanisms producing the double AGN components, and suggest several observational criteria for selecting the most promising dual AGN candidates from the full sample of double-peaked narrow-line AGNs. Using these criteria, we determine the 17 most compelling dual AGN candidates in our sample.


The Astrophysical Journal | 2014

SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON

Eran O. Ofek; Andreas Zoglauer; Steven E. Boggs; Stephen P. Reynolds; Chris L. Fryer; Fiona A. Harrison; S. Bradley Cenko; S. R. Kulkarni; Avishay Gal-Yam; Iair Arcavi; Eric C. Bellm; Joshua S. Bloom; Finn Erland Christensen; William W. Craig; Wesley Even; Alexei V. Filippenko; Brian W. Grefenstette; Charles J. Hailey; Russ R. Laher; Kristin K. Madsen; Ehud Nakar; Peter E. Nugent; Daniel Stern; M. Sullivan; Jason A. Surace; William W. Zhang

Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 10^50 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ~10^16 cm of the progenitor of SN 2010jl was in excess of 10 M_☉. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ~6000 km s^–1, decelerating to ~2600 km s^–1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000-4500 km s^–1 if the ions and electrons are in equilibrium, and ≳ 2000 km s^–1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r^–2 law. A possible explanation for the ≳ 10 M_☉ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.


The Astrophysical Journal | 2013

THE NuSTAR EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION

D. M. Alexander; D. Stern; A. Del Moro; G. B. Lansbury; Roberto J. Assef; James Aird; M. Ajello; D. R. Ballantyne; F. E. Bauer; S. E. Boggs; W. N. Brandt; Finn Erland Christensen; F. Civano; A. Comastri; William W. Craig; M. Elvis; Brian W. Grefenstette; Charles J. Hailey; Fiona A. Harrison; R. C. Hickox; B. Luo; Kristin K. Madsen; J. R. Mullaney; Matteo Perri; S. Puccetti; C. Saez; Ezequiel Treister; Claudia M. Urry; William W. Zhang; C. Bridge

We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at ≳10 keV. We find that these NuSTAR-detected sources are ≈100 times fainter than those previously detected at ≳10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L_(10-40 keV) ≈ 4 × 10^(41)-5 × 10^(45) erg s^(–1)); the median redshift and luminosity are z ≈ 0.7 and L_(10-40 keV) ≈ 3 × 10^(44) erg s^(–1), respectively. We characterize these sources on the basis of broad-band ≈0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L_(10-40 keV) > 10^(44) erg s^(–1), of which ≈50% are obscured with N_H ≳ 10^(22) cm^(–2). However, none of the 10 NuSTAR sources are Compton thick (N_H ≳ 10^(24) cm^(–2)) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L_(10-40 keV) > 10^(44) erg s^(–1)) selected at ≳10 keV of ≾33% over the redshift range z = 0.5-1.1. We jointly fitted the rest-frame ≈10-40 keV data for all of the non-beamed sources with L_(10-40 keV) > 10^(43) erg s^(–1) to constrain the average strength of reflection; we find R < 1.4 for Γ = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at ≳10 keV. We also constrain the host-galaxy masses and find a median stellar mass of ≈10^(11) M_☉, a factor ≈5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.

Collaboration


Dive into the Kristin K. Madsen's collaboration.

Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Finn Erland Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Daniel Stern

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Grefenstette

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromasa Miyasaka

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge