Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin M. O'Brien is active.

Publication


Featured researches published by Kristin M. O'Brien.


The Journal of Experimental Biology | 2006

When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes.

Bruce D. Sidell; Kristin M. O'Brien

SUMMARY The Antarctic icefishes (Family Channichthyidae) provide excellent examples of unique traits that can arise in a chronically cold and isolated environment. Their loss of hemoglobin (Hb) expression, and in some cases, loss of myoglobin (Mb) expression, has taught us much about the function of these proteins. Although absences of the proteins are fixed traits in icefishes, the losses do not appear to be of adaptive value. Contrary to some suggestions, loss of Hb has led to higher energetic costs for circulating blood, and losses of Mb have reduced cardiac performance. Moreover, losses of Hb and Mb have resulted in extensive modifications to the cardiovascular system to ensure adequate oxygen delivery to working muscles. Recent studies suggest that losses of Hb and Mb, and their associated nitric oxide (NO)-oxygenase activities, may have accelerated the development and evolution of these cardiovascular modifications. The high levels of NO that should occur in the absence of Hb and Mb have been shown in other animal groups to lead to an increase in tissue vascularization, an increase in the lumenal diameter of blood vessels, and an increase in mitochondrial densities. These characteristics are all hallmark traits of Antarctic icefishes. Homeostatic feedback mechanisms thus may have accelerated evolution of the pronounced cardiovascular traits of Antarctic icefishes.


The Journal of Experimental Biology | 2011

Mitochondrial biogenesis in cold-bodied fishes

Kristin M. O'Brien

Summary Mitochondrial biogenesis is induced in response to cold temperature in many organisms. The effect is particularly pronounced in ectotherms such as fishes, where acclimation to cold temperature increases mitochondrial density. Some polar fishes also have exceptionally high densities of mitochondria. The net effect of increasing mitochondrial density is threefold. First, it increases the concentration of aerobic metabolic enzymes per gram of tissue, maintaining ATP production. Second, it elevates the density of mitochondrial membrane phospholipids, enhancing rates of intracellular oxygen diffusion. Third, it reduces the diffusion distance for oxygen and metabolites between capillaries and mitochondria. Although cold-induced mitochondrial biogenesis has been well documented in fishes, little is known about the molecular pathway governing it. In mammals, the co-transcriptional activator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is thought to coordinate the three components of mitochondrial biogenesis: the synthesis of mitochondrial proteins, the synthesis of phospholipids and the replication of mitochondrial DNA. Some components of the mitochondrial biogenic pathway are conserved between fishes and mammals, yet the pathway appears more versatile in fishes. In some tissues of cold-acclimated fishes, the synthesis of mitochondrial proteins increases in the absence of an increase in phospholipids, whereas in some polar fishes, densities of mitochondrial phospholipids increase in the absence of an increase in proteins. The ability of cold-bodied fishes to fine-tune the mitochondrial biogenic pathway may allow them to modify mitochondrial characteristics to meet the specific needs of the cell, whether it is to increase ATP production or enhance oxygen diffusion.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation

Julieanna I. Orczewska; Goetz Hartleben; Kristin M. O'Brien

We sought to determine the molecular basis of elevations in aerobic metabolic capacity in the oxidative muscle and liver of Gasterosteus aculeatus in response to cold acclimation. Fishes were cold- or warm-acclimated for 9 wk and harvested on days 1, 2, and 3 and weeks 1, 4, and 9 of cold acclimation at 8 degrees C, and on day 1 and week 9 of warm acclimation at 20 degrees C. Mitochondrial volume density was quantified using transmission electron microscopy and stereological techniques in warm- and cold-acclimated fishes harvested after 9 wk at 20 or 8 degrees C. Changes in aerobic metabolic capacity were assessed by measuring the maximal activity of citrate synthase (CS) and cytochrome-c oxidase (COX) in fishes harvested throughout the acclimation period. Transcript levels of the aerobic metabolic genes CS, COXIII, and COXIV, and known regulators of mitochondrial biogenesis, including peroxisome proliferator-activated receptor-gamma coactivators-1alpha and -1beta (PGC-1alpha and PGC-1beta), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor-A were measured in fishes harvested throughout the acclimation period using quantitative real-time PCR. The maximal activities of CS and COX increased in response to cold acclimation in both tissues, but mitochondrial volume density only increased in oxidative muscle (P < 0.05). The time course for changes in aerobic metabolic capacity differed between liver and muscle. The expression of CS increased within 1 wk of cold acclimation in liver and was correlated with an increase in mRNA levels of NRF-1 and PGC-1beta. Transcript levels of aerobic metabolic genes increased later in oxidative muscle, between weeks 4 and 9 of cold acclimation and were correlated with an increase in mRNA levels of NRF-1 and PGC-1alpha. These results show that aerobic metabolic remodeling differs between liver and muscle in response to cold acclimation and may be triggered by different stimuli.


The Journal of Experimental Biology | 2011

Oxidative stress is transient and tissue specific during cold acclimation of threespine stickleback

Aaron R. Kammer; Julieanna I. Orczewska; Kristin M. O'Brien

SUMMARY Linkages between cold acclimation and oxidative stress in fishes are unclear and contradictory results have been published. We sought to determine whether oxidative stress occurs during cold acclimation of threespine stickleback (Gasterosteus aculeatus), and, if so, when it occurs and whether it varies among tissues. Fish were warm (20°C) or cold (8°C) acclimated for 9 weeks, and harvested during acclimation. Oxidative stress was assessed in oxidative and glycolytic muscles and liver by measuring levels of protein carbonyls and glutathione, and the activity and transcript levels of superoxide dismutase (SOD). Protein carbonyl levels increased in liver after 1 week at 8°C and then decreased after week 4, and remained unchanged in glycolytic and oxidative muscle. Glutathione levels increased in liver on day 3 of cold acclimation and may minimize oxidative stress later during acclimation. When measured at a common temperature, the activity of SOD increased in oxidative and glycolytic muscles on day 2 of cold acclimation, and on day 3 in liver, and remained elevated in all tissues compared with warm-acclimated animals. When measured at the acclimation temperature, the activity of SOD was significantly higher only at week 9 in oxidative muscle of cold-acclimated stickleback compared with warm-acclimated fish, and remained constant in glycolytic muscle and liver. Increased SOD activity in oxidative muscle may be required to prevent oxidative stress brought about by increased mitochondrial density. In both muscle and liver, SOD activity increased independently of an increase in transcript level, suggesting post-translational modifications regulate SOD activity.


The Journal of Experimental Biology | 2008

High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis

Matthew R. Urschel; Kristin M. O'Brien

SUMMARY We investigated the molecular mechanisms regulating differences in mitochondrial volume density between heart ventricles of Antarctic notothenioids that vary in the expression of hemoglobin (Hb) and myoglobin (Mb). In mammals, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF-1) stimulate mitochondrial biogenesis and maintain mitochondrial density in muscle tissues. We hypothesized that these factors would also maintain mitochondrial density in the hearts of Antarctic notothenioids. The percent cell volume occupied by mitochondria is significantly lower in hearts of the red-blooded notothenioid Notothenia coriiceps (18.18±0.69%) in comparison with those of the icefish Chaenocephalus aceratus (36.53±2.07%), which lacks both Hb and cardiac Mb. Mitochondrial densities are not different between hearts of N. coriiceps and Chionodraco rastrospinosus, which lacks Hb, but whose heart expresses Mb. Despite differences in mitochondrial volume density between hearts of N. coriiceps and C. aceratus, the levels of transcripts of the genes encoding PGC-1α, NRF-1 and citrate synthase, and the copy number of mitochondrial DNA do not differ. Our results indicate that the high mitochondrial densities in hearts of C. aceratus may result from an increase in organelle size. The surface-to-volume ratio of mitochondria from N. coriiceps is 1.9-fold greater than that of mitochondria from C. aceratus. In addition, the levels of PGC-1α correlate with mitochondrial density in muscle tissues of notothenioids possessing mitochondria of similar size and morphology. Finally, the levels of PGC-1α are 4.6-fold higher in the aerobic pectoral adductor muscle in comparison with the glycolytic skeletal muscle of N. coriiceps. The potential physiological significance of an increase in mitochondrial size in hearts of Antarctic icefishes is discussed.


The Journal of Experimental Biology | 2003

Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes

Kristin M. O'Brien; C. Skilbeck; B. D. Sidell; Stuart Egginton

SUMMARY Muscle fine structure and metabolism were examined in four species of Antarctic fishes that vary in their expression of haemoglobin (Hb). To determine how locomotory pectoral muscles maintain function, metabolic capacity, capillary supply and fibre ultrastructure were examined in two nototheniid species that express Hb (Notothenia coriiceps and Gobionotothen gibberifrons) and two species of channichthyid icefish that lack Hb (Chaenocephalus aceratus and Chionodraco rastrospinosus). Surprisingly, icefish have higher densities of mitochondria than red-blooded species (C. aceratus, 53±3% of cell volume; C. rastrospinosus, 39±3%; N. coriiceps, 29±3%; G. gibberifrons, 25±1%). Despite higher mitochondrial densities the aerobic metabolic capacities per g wet mass, estimated from measurements of maximal activities of key metabolic enzymes, are lower in icefish compared to red-blooded species. This apparent incongruity can be explained by the significantly lower mitochondrial cristae surface area per unit mitochondrion volume in icefishes (C. aceratus, 20.8±1.6 μm-1; C. rastrospinosus, 25.5±1.8 μm-1) compared to red-blooded species (N. coriiceps, 33.6±3.0 μm-1; G. gibberifrons, 37.7±3.6 μm-1). Consequently, the cristae surface area per unit muscle mass is conserved at approximately 9 m2g-1. Although high mitochondrial densities in icefish muscle do not enhance aerobic metabolic capacity, they may facilitate intracellular oxygen movement because oxygen is more soluble in lipid, including the hydrocarbon core of intracellular membrane systems, than in aqueous cytoplasm. This may be particularly vital in icefish, which have larger oxidative muscle fibres compared to red-blooded nototheniods (C. aceratus, 2932±428 μm2; C. rastrospinosus, 9352±318 μm2; N. coriiceps, 1843±312μ m2; G. gibberifrons, 2103±194μ m2). These large fibres contribute to a relatively low capillary density, which is partially compensated for in icefish by a high index of tortuosity in the capillary bed (C. aceratus=1.4, N. coriiceps=1.1).


The Journal of Experimental Biology | 2012

Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes.

Irina A. Mueller; Devin P. Devor; Jeffrey M. Grim; Jody M. Beers; Elizabeth L. Crockett; Kristin M. O'Brien

SUMMARY Antarctic icefishes have a significantly lower critical thermal maximum (CTmax) compared with most red-blooded notothenioid fishes. We hypothesized that the lower thermal tolerance of icefishes compared with red-blooded notothenioids may stem from a greater vulnerability to oxidative stress as temperature increases. Oxidative muscles of icefishes have high volume densities of mitochondria, rich in polyunsaturated fatty acids, which can promote the production of reactive oxygen species (ROS). Moreover, icefishes have lower levels of antioxidants compared with red-blooded species. To test our hypothesis, we measured levels of oxidized proteins and lipids, and transcript levels and maximal activities of antioxidants in heart ventricle and oxidative pectoral adductor muscle of icefishes and red-blooded notothenioids held at 0°C and exposed to their CTmax. Levels of oxidized proteins and lipids increased in heart ventricle of some icefishes but not in red-blooded species in response to warming, and not in pectoral adductor muscle of any species. Thus, increases in oxidative damage in heart ventricles may contribute to the reduced thermal tolerance of icefishes. Despite an increase in oxidative damage in hearts of icefishes, neither transcript levels nor activities of antioxidants increased, nor did they increase in any tissue of any species in response to exposure to CTmax. Rather, transcript levels of the enzyme superoxide dismutase (SOD) decreased in hearts of icefishes and the activity of SOD decreased in hearts of the red-blooded species Gobionotothen gibberifrons. These data suggest that notothenioids may have lost the ability to elevate levels of antioxidants in response to heat stress.


The Journal of Experimental Biology | 2011

Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes

Irina A. Mueller; Jeffrey M. Grim; Jody M. Beers; Elizabeth L. Crockett; Kristin M. O'Brien

SUMMARY It is unknown whether Antarctic fishes can defend themselves against oxidative stress induced by elevations in temperature. We hypothesized that Antarctic icefishes, lacking the oxygen-binding protein hemoglobin, might be more vulnerable to temperature-induced oxidative stress compared with red-blooded notothenioids because of differences in their mitochondrial properties. Mitochondria from icefishes have higher densities of phospholipids per mg of mitochondrial protein compared with red-blooded species, and these phospholipids are rich in polyunsaturated fatty acids (PUFA), which can promote the formation of reactive oxygen species (ROS). Additionally, previous studies have shown that multiple tissues in icefishes have lower levels of antioxidants compared with red-blooded species. We quantified several properties of mitochondria, including proton leak, rates of ROS production, membrane composition and susceptibility to lipid peroxidation (LPO), the activity of superoxide dismutase (SOD) and total antioxidant power (TAOP) in mitochondria isolated from hearts of icefishes and red-blooded notothenioids. Mitochondria from icefishes were more tightly coupled than those of red-blooded fishes at both 2°C and 10°C, which increased the production of ROS when the electron transport chain was disrupted. The activity of SOD and TAOP per mg of mitochondrial protein was equivalent between icefishes and red-blooded species, but TAOP normalized to mitochondrial phospholipid content was significantly lower in icefishes compared with red-blooded fishes. Additionally, membrane susceptibility to peroxidation was only detectable in icefishes at 1°C and not in red-blooded species. Together, our results suggest that the high density of mitochondrial phospholipids in hearts of icefishes may make them particularly vulnerable to oxidative stress as temperatures rise.


EMBO Reports | 2013

The promise and perils of Antarctic fishes The remarkable life forms of the Southern Ocean have much to teach science about survival, but human activity is threatening their existence

Kristin M. O'Brien; Elizabeth L. Crockett

Beneath the surface of the Southern Ocean, in the deep waters of the continental shelf and continental slope of Antarctica, a magnificent fauna consisting of over 320 known species of fish thrives in the cold and dark. These fish are uniquely adapted to the extreme environment in which they live. Over the course of millennia, they have evolved a remarkable range of physiological and biochemical features, the most visually stunning of which is that some lack haemoglobin (Fig 1). Yet, these species are under threat from global climate change and fishing, and the secrets they might unlock for science could be lost in the next decades if action is not taken. Figure 1. The blackfin icefish Chaneocephalus aceratus . Photo credit: Steve Untracht. A human can survive in freezing water for around 15 min before their organs begin to shut down. The fauna of the Southern Ocean spend their entire lives at these extreme temperatures. The fish species present are dominated by members of the Notothenioidei, which comprises 50% and 90% of the Antarctic finfish diversity and biomass, respectively [1,2,3]. The notothenioids are a suborder of perch‐like fishes that are mainly benthic and highly endemic to the Antarctic region. They are divided into eight families that have radiated from an ancestral stock during the last 20 million years to fill a variety of niches. These families include the Nototheniidae—the most diverse and specious family of the notothenioids—the Bathydraconidae—the dragonfishes, so‐named because of their especially long and narrow body forms—and the Channichthyidae—the icefishes, known for their colourless blood. > …the Antarctic and its spectacular fauna are suffering a fate similar to others on the planet—their survival is threatened by anthropogenic activities The composition of todays Antarctic fish fauna has been strongly influenced by the distinctive oceanographic features of …


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014

Hearts of some Antarctic fishes lack mitochondrial creatine kinase

Kristin M. O'Brien; I.A. Mueller; J.I. Orczewska; K.R. Dullen; M. Ortego

Creatine kinase (CK; EC 2.7.3.2) functions as a spatial and temporal energy buffer, dampening fluctuations in ATP levels as ATP supply and demand change. There are four CK isoforms in mammals, two cytosolic isoforms (muscle [M-CK] and brain [B-CK]), and two mitochondrial isoforms (ubiquitous [uMtCK] and sarcomeric [sMtCK]). Mammalian oxidative muscle couples expression of sMtCK with M-CK, creating an energy shuttle between mitochondria and myofibrils. We hypothesized that the expression pattern and activity of CK would differ between hearts of red- and white-blooded Antarctic notothenioid fishes due to their striking differences in cardiac ultrastructure. Hearts of white-blooded icefishes (family Channichthyidae) have significantly higher mitochondrial densities compared to red-blooded species, decreasing the diffusion distance for ATP between mitochondria and myofibrils and potentially minimizing the need for CK. The distribution of CK isoforms was evaluated using western blotting and maximal activity of CK was measured in mitochondrial and cytosolic fractions and tissue homogenates of heart ventricles of red- and white-blooded notothenioids. Transcript abundance of sMtCK and M-CK was also quantified. Overall, CK activity is similar between hearts of red- and white-blooded notothenioids but hearts of icefishes lack MtCK and have higher activities of M-CK in the cytosol compared to red-blooded fishes. The absence of MtCK may compromise cardiac function under stressful conditions when ATP supply becomes limiting.

Collaboration


Dive into the Kristin M. O'Brien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Hoffman

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Anthony P. Farrell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Corey A. Oldham

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina A. Mueller

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Keenan

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge