Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Scharnweber is active.

Publication


Featured researches published by Kristin Scharnweber.


Ecology | 2014

Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes.

Kristin Scharnweber; Jari Syväranta; Sabine Hilt; Mario Brauns; M.J. Vanni; Jan Köhler; Jelena Knežević-Jarić; Thomas Mehner

Lake ecosystems are strongly linked to their terrestrial surroundings by material and energy fluxes across ecosystem boundaries. However, the contribution of terrestrial particulate organic carbon (tPOC) from annual leaf fall to lake food webs has not yet been adequately traced and quantified. In this study, we conducted whole-lake experiments to trace artificially added tPOC through the food webs of two shallow lakes of similar eutrophic status, but featuring alternative stable regimes (macrophyte rich vs. phytoplankton dominated). Lakes were divided with a curtain, and maize (Zea mays) leaves were added, as an isotopically distinct tPOC source, into one half of each lake. To estimate the balance between autochthonous carbon fixation and allochthonous carbon input, primary production and tPOC and tDOC (terrestrial dissolved organic carbon) influx were calculated for the treatment sides. We measured the stable isotope ratios of carbon (delta13C) of about 800 samples from all trophic consumer levels and compared them between lake sides, lakes, and three seasons. Leaf litter bag experiments showed that added maize leaves were processed at rates similar to those observed for leaves from shoreline plants, supporting the suitability of maize leaves as a tracer. The lake-wide carbon influx estimates confirmed that autochthonous carbon fixation by primary production was the dominant carbon source for consumers in the lakes. Nevertheless, carbon isotope values of benthic macroinvertebrates were significantly higher with maize additions compared to the reference side of each lake. Carbon isotope values of omnivorous and piscivorous fish were significantly affected by maize additions only in the macrophyte-dominated lake and delta13C of zooplankton and planktivorous fish remained unaffected in both lakes. In summary, our results experimentally demonstrate that tPOC in form of autumnal litterfall is rapidly processed during the subsequent months in the food web of shallow lakes and is channeled to secondary and tertiary consumers predominantly via the benthic pathways. A more intense processing of tPOC seems to be connected to a higher structural complexity in littoral zones, and hence may differ between shallow lakes of alternative stable states.


Ecosystems | 2016

Weak Response of Animal Allochthony and Production to Enhanced Supply of Terrestrial Leaf Litter in Nutrient-Rich Lakes

Thomas Mehner; Katrin Attermeyer; Mario Brauns; Jochen Diekmann; Ursula Gaedke; Hans-Peter Grossart; Jan Köhler; Betty Lischke; Nils Meyer; Kristin Scharnweber; Jari Syväranta; Michael J. Vanni; Sabine Hilt

Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.


Hydrobiologia | 2015

Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish

Sabine Hilt; Thomas Wanke; Kristin Scharnweber; Mario Brauns; Jari Syväranta; Ursula Gaedke; Jan Köhler; Betty Lischke; Thomas Mehner

Food-web effects of winterkill are difficult to predict as the enhanced mortality of planktivorous fish may be counterbalanced by an even higher mortality of piscivores. We hypothesised that a winterkill in a clear and a turbid shallow lake would equalise their fish community composition, but seasonal plankton successions would differ between lakes. After a partial winterkill, we observed a reduction of fish biomass by 16 and 43% in a clear-water and a turbid small temperate lake, respectively. Fish biomass and piscivore shares (5% of fish biomass) were similar in both lakes after this winterkill, but young-of-the-year (YOY) abundances were higher in the turbid lake. Top-down control by crustaceans was only partly responsible for low phytoplankton biomass at the end of May following the winterkill in both lakes. Summer phytoplankton biomass remained low in the clear-water lake despite high abundances of YOY fish (mainly roach). In contrast, the crustacean biomass of the turbid lake was reduced in summer by a high YOY abundance (sunbleak and roach), leading to a strong increase in phytoplankton biomass. The YOY abundance of fish in shallow eutrophic lakes may thus be more important for their summer phytoplankton development after winterkill than the relative abundance of piscivores.


PLOS ONE | 2016

Assessing the utility of hydrogen, carbon and nitrogen stable isotopes in estimating consumer allochthony in two shallow eutrophic lakes

Jari Syväranta; Kristin Scharnweber; Mario Brauns; Sabine Hilt; Thomas Mehner

Hydrogen stable isotopes (δ2H) have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex) among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton) compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton), with the exception of aquatic vascular plants (23%, referred to as macrophytes). The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios) in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter), particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.


Journal of Evolutionary Biology | 2016

Changing the habitat: the evolution of intercorrelated traits to escape from predators.

Dirk J. Mikolajewski; Kristin Scharnweber; B Jiang; Sebastian Leicht; Rüdiger Mauersberger; Frank Johansson

Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst‐swim‐mediating morphology in response to a habitat shift‐related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well‐known habitat shift from predatory fish lakes (fish lakes) to predatory fish‐free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly‐lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.


PLOS ONE | 2016

Decrease of Population Divergence in Eurasian Perch (Perca fluviatilis) in Browning Waters: Role of Fatty Acids and Foraging Efficiency

Kristin Scharnweber; Ursula Strandberg; Konrad Karlsson; Peter Eklöv

Due to altered biogeochemical processes related to climate change, highly colored dissolved organic carbon (DOC) from terrestrial sources will lead to a water “brownification” in many freshwater systems of the Northern Hemisphere. This will create deteriorated visual conditions that have been found to affect habitat-specific morphological variations in Eurasian perch (Perca fluviatilis) in a previous study. So far, potential drivers and ultimate causes of these findings have not been identified. We conducted a field study to investigate the connection between morphological divergence and polyunsaturated fatty acid (PUFA) composition of perch from six lakes across a gradient of DOC concentration. We expected a decrease in the prevalence of PUFAs, which are important for perch growth and divergence with increasing DOC concentrations, due to the restructuring effects of DOC on aquatic food webs. In general, rate of morphological divergence in perch decreased with increasing DOC concentrations. Proportions of specific PUFAs (22:6n-3, 18:3n-3, 20:5n-3, and 20:4n-6) identified to primarily contribute to overall differences between perch caught in clear and brown-water lakes tended to be connected to overall decline of morphological divergence. However, no overall significant relationship was found, indicating no severe limitation of essential fatty acids for perch inhabiting brown water lakes. We further broaden our approach by conducting a laboratory experiment on foraging efficiency of perch. Therefore, we induced pelagic and littoral phenotypes by differences in habitat-structure and feeding mode and recorded attack rate in a feeding experiment. Generally, fish were less efficient in foraging on littoral prey (Ephemeroptera) when visual conditions were degraded by brown water color. We concluded that browning water may have a strong effect on the forager’s ability to find particular food resources, resulting in the reduced development of evolutionary traits, such as habitat- specific morphological divergence.


Ecology | 2018

Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra.

Thomas Mehner; Betty Lischke; Kristin Scharnweber; Katrin Attermeyer; Ursula Gaedke; Sabine Hilt; Sandra Brucet

The density of organisms declines with size, because larger organisms need more energy than smaller ones and energetic losses occur when larger organisms feed on smaller ones. A potential expression of density-size distributions are Normalized Biomass Size Spectra (NBSS), which plot the logarithm of biomass independent of taxonomy within bins of logarithmic organismal size, divided by the bin width. Theoretically, the NBSS slope of multi-trophic communities is exactly -1.0 if the trophic transfer efficiency (TTE, ratio of production rates between adjacent trophic levels) is 10% and the predator-prey mass ratio (PPMR) is fixed at 104 . Here we provide evidence from four multi-trophic lake food webs that empirically estimated TTEs correspond to empirically estimated slopes of the respective community NBSS. Each of the NBSS considered pelagic and benthic organisms spanning size ranges from bacteria to fish, all sampled over three seasons in 1 yr. The four NBSS slopes were significantly steeper than -1.0 (range -1.14 to -1.19, with 95% CIs excluding -1). The corresponding average TTEs were substantially lower than 10% in each of the four food webs (range 1.0% to 3.6%, mean 1.85%). The overall slope merging all biomass-size data pairs from the four systems (-1.17) was almost identical to the slope predicted from the arithmetic mean TTE of the four food webs (-1.18) assuming a constant PPMR of 104 . Accordingly, our empirical data confirm the theoretically predicted quantitative relationship between TTE and the slope of the biomass-size distribution. Furthermore, we show that benthic and pelagic organisms can be merged into a community NBSS, but future studies have yet to explore potential differences in habitat-specific TTEs and PPMRs. We suggest that community NBSS may provide valuable information on the structure of food webs and their energetic pathways, and can result in improved accuracy of TTE-estimates.


Limnology and Oceanography | 2014

A feedback loop links brownification and anoxia in a temperate, shallow lake

Jan Köhler; Katrin Attermeyer; Hans-Peter Grossart; Thomas Mehner; Nils Meyer; Kristin Scharnweber; Sabine Hilt


Oikos | 2014

Boomerang ecosystem fluxes: organic carbon inputs from land to lakes are returned to terrestrial food webs via aquatic insects

Kristin Scharnweber; M.J. Vanni; Sabine Hilt; Jari Syväranta; Thomas Mehner


Freshwater Biology | 2015

Convergent changes in the trophic ecology of extremophile fish along replicated environmental gradients

Michael Tobler; Kristin Scharnweber; Ryan Greenway; Courtney N. Passow; Lenin Arias-Rodriguez; Francisco J. García-De-León

Collaboration


Dive into the Kristin Scharnweber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Brauns

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jari Syväranta

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge