Kristin V. Tarbell
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristin V. Tarbell.
Journal of Experimental Medicine | 2003
Sayuri Yamazaki; Tomonori Iyoda; Kristin V. Tarbell; Kara Olson; Klara Velinzon; Kayo Inaba; Ralph M. Steinman
An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25− autoimmune disease–inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25− CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25− CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC–T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25− CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.
Journal of Experimental Medicine | 2004
Kristin V. Tarbell; Sayuri Yamazaki; Kara Olson; Priscilla Toy; Ralph M. Steinman
In the nonobese diabetic (NOD) mouse model of type 1 diabetes, the immune system recognizes many autoantigens expressed in pancreatic islet β cells. To silence autoimmunity, we used dendritic cells (DCs) from NOD mice to expand CD25+ CD4+ suppressor T cells from BDC2.5 mice, which are specific for a single islet autoantigen. The expanded T cells were more suppressive in vitro than their freshly isolated counterparts, indicating that DCs from autoimmune mice can increase the number and function of antigen-specific, CD25+ CD4+ regulatory T cells. Importantly, only 5,000 expanded CD25+ CD4+ BDC2.5 T cells could block autoimmunity caused by diabetogenic T cells in NOD mice, whereas 105 polyclonal, CD25+ CD4+ T cells from NOD mice were inactive. When islets were examined in treated mice, insulitis development was blocked at early (3 wk) but not later (11 wk) time points. The expanded CD25+ CD4+ BDC2.5 T cells were effective even if administered 14 d after the diabetogenic T cells. Our data indicate that DCs can generate CD25+ CD4+ T cells that suppress autoimmune disease in vivo. This might be harnessed as a new avenue for immunotherapy, especially because CD25+ CD4+ regulatory cells responsive to a single autoantigen can inhibit diabetes mediated by reactivity to multiple antigens.
Annual Review of Immunology | 2009
Yasmine Belkaid; Kristin V. Tarbell
Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.
Journal of Experimental Medicine | 2007
Kristin V. Tarbell; Lucine Petit; Xiaopan Zuo; Priscilla Toy; Xunrong Luo; Amina Mqadmi; Hua Yang; Manikkam Suthanthiran; Svetlana Mojsov; Ralph M. Steinman
Most treatments that prevent autoimmune diabetes in nonobese diabetic (NOD) mice require intervention at early pathogenic stages, when insulitis is first developing. We tested whether dendritic cell (DC)–expanded, islet antigen–specific CD4+ CD25+ suppressor T cells could treat diabetes at later stages of disease, when most of the insulin-producing islet β cells had been destroyed by infiltrating lymphocytes. CD4+ CD25+ CD62L+ regulatory T cells (T reg cells) from BDC2.5 T cell receptor transgenic mice were expanded with antigen-pulsed DCs and IL-2, and were then injected into NOD mice. A single dose of as few as 5 × 104 of these islet-specific T reg cells blocked diabetes development in prediabetic 13-wk-old NOD mice. The T reg cells also induced long-lasting reversal of hyperglycemia in 50% of mice in which overt diabetes had developed. Successfully treated diabetic mice had similar responses to glucose challenge compared with nondiabetic NOD mice. The successfully treated mice retained diabetogenic T cells, but also had substantially increased Foxp3+ cells in draining pancreatic lymph nodes. However, these Foxp3+ cells were derived from the recipient mice and not the injected T reg cells, suggesting a role for endogenous T reg cells in maintaining tolerance after treatment. Therefore, inoculation of DC-expanded, antigen-specific suppressor T cells has considerable efficacy in ameliorating ongoing diabetes in NOD mice.
Immunological Reviews | 2006
Sayuri Yamazaki; Kayo Inaba; Kristin V. Tarbell; Ralph M. Steinman
Summary: Thymic derived naturally occurring CD25+CD4+ T regulatory cells (Tregs) suppress immune responses, including transplantation. Here we discuss the capacity of dendritic cells (DCs) to expand antigen‐specific Tregs, particularly polyclonal Tregs directed to alloantigens. Initial studies have shown that mature DCs are specialized antigen‐presenting cells (APCs) for expanding antigen‐specific CD25+ CD4+ Tregs from TCR transgenic mice. When triggered by specific antigen, these Tregs act back on immature DCs to block the upregulation of CD80 and CD86 costimulatory molecules. More recently, DCs have been used to expand alloantigen‐specific CD25+CD4+ Tregs from the polyclonal repertoire in the presence of interleukin‐2 (IL‐2). Allogeneic DCs are much more effective than allogeneic spleen cells for expanding CD25+CD4+ Tregs. The DC‐expanded Tregs continue to express high levels of Foxp3, even without supplemental IL‐2, whereas spleen cells poorly sustain Foxp3 expression. When suppressive activity is tested, relatively small numbers of DC‐expanded CD25+CD4+ Tregs exert antigen‐specific suppression in the mixed leukocyte reaction (MLR), blocking immune responses to the original stimulating strain 10 times more effectively than to third party stimulating cells. DC‐expanded Tregs also retard graft versus host disease (GVHD) across full major histocompatibility complex (MHC) barriers. In vitro and in vivo, the alloantigen‐specific CD25+CD4+ Tregs are much more effective suppressors of transplantation reactions than polyclonal populations. We suggest that the expansion of Tregs from a polyclonal repertoire via antigen‐presenting DCs will provide a means for antigen‐specific control of unwanted immune reactions.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xunrong Luo; Kristin V. Tarbell; Hua Yang; Kathryn L. Pothoven; Samantha L. Bailey; Ruchuang Ding; Ralph M. Steinman; Manikkam Suthanthiran
CD4+CD25+Foxp3+ regulatory T cells (T regs) are important for preventing autoimmune diabetes and are either thymic-derived (natural) or differentiated in the periphery outside the thymus (induced). Here we show that β-cell peptide-pulsed dendritic cells (DCs) from nonobese diabetic (NOD) mice can effectively induce CD4+CD25+Foxp3+ T cells from naïve islet-specific CD4+CD25− T cells in the presence of TGF-β1. These induced, antigen-specific T regs maintain high levels of clonotype-specific T cell receptor expression and exert islet-specific suppression in vitro. When cotransferred with diabetogenic cells into NOD scid recipients, T regs induced with DCs and TGF-β1 prevent the development of diabetes. Furthermore, in overtly NOD mice, these cells are able to significantly protect syngeneic islet grafts from established destructive autoimmunity. These results indicate a role for DCs in the induction of antigen-specific CD4+CD25+Foxp3+ T cells that can inhibit fully developed autoimmunity in a nonlymphopoenic host, providing an important potential strategy for immunotherapy in patients with autoimmune diabetes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Arunika Mukhopadhaya; Tadashi Hanafusa; Irene Jarchum; Yi-Guang Chen; Yoshiko Iwai; David V. Serreze; Ralph M. Steinman; Kristin V. Tarbell; Teresa P. DiLorenzo
Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. Cytotoxic CD8+ T cells, reactive to β cell antigens, are required for T1D development in the NOD mouse model of the disease, and CD8+ T cells specific for β cell antigens can be detected in the peripheral blood of T1D patients. It has been evident that in nonautoimmune-prone mice, dendritic cells (DCs) present model antigens in a tolerogenic manner in the steady state, e.g., in the absence of infection, and cause T cells to proliferate initially but then to be deleted or rendered unresponsive. However, this fundamental concept has not been evaluated in the setting of a spontaneous autoimmune disease. To do so, we delivered a mimotope peptide, recognized by the diabetogenic CD8+ T cell clone AI4, to DCs in NOD mice via the endocytic receptor DEC-205. Proliferation of transferred antigen-specific T cells was initially observed, but this was followed by deletion. Tolerance was achieved because rechallenge of mice with the mimotope peptide in adjuvant did not induce an immune response. Thus, targeting of DCs with β cell antigens leads to deletion of autoreactive CD8+ T cells even in the context of ongoing autoimmunity in NOD mice with known tolerance defects. Our results provide support for the development of DC targeting of self antigens for treatment of chronic T cell-mediated autoimmune diseases.
Journal of Experimental Medicine | 2002
Kristin V. Tarbell; Mark Lee; Erik A. Ranheim; Cheng Chi Chao; Maija Sanna; Seon-Kyeong Kim; Peter Dickie; Luc Teyton; Mark M. Davis; Hugh O. McDevitt
Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.
Journal of Immunology | 2012
Marc P. Hübner; Yinghui Shi; Marina N. Torrero; Ellen Mueller; David Larson; Kateryna Soloviova; Fabian Gondorf; Achim Hoerauf; Kristin E. Killoran; J. Thomas Stocker; Stephen J. Davies; Kristin V. Tarbell; Edward Mitre
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4–deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4–competent NOD mice, IL-4–deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4–deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4–deficient NOD mice were accompanied by increases in CD4+CD25+Foxp3+ regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4+Foxp3+ cells. However, depletion of CD25+ cells in NOD mice or Foxp3+ T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.
Immunity | 2013
James M. Gardner; Todd Metzger; Eileen J. McMahon; Byron B. Au-Yeung; Anna K. Krawisz; Wen Lu; Jeffrey D. Price; Kellsey Johannes; Ansuman T. Satpathy; Kenneth M. Murphy; Kristin V. Tarbell; Arthur Weiss; Mark S. Anderson
The autoimmune regulator (Aire) is essential for prevention of autoimmunity; its role is best understood in the thymus, where it promotes self-tolerance through tissue-specific antigen (TSA) expression. Recently, extrathymic Aire-expressing cells (eTACs) have been described in murine secondary lymphoid organs, but the identity of such cells and their role in immune tolerance remains unclear. Here we have shown that eTACs are a discrete major histocompatibility complex class II (MHC II)(hi), CD80(lo), CD86(lo), epithelial cell adhesion molecule (EpCAM)(hi), CD45(lo) bone marrow-derived peripheral antigen-presenting cell (APC) population. We also have demonstrated that eTACs can functionally inactivate CD4⁺ T cells through a mechanism that does not require regulatory T cells (Treg) and is resistant to innate inflammatory stimuli. Together, these findings further define eTACs as a distinct tolerogenic cell population in secondary lymphoid organs.