Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Beblo-Vranesevic is active.

Publication


Featured researches published by Kristina Beblo-Vranesevic.


PLOS ONE | 2017

The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

Kristina Beblo-Vranesevic; Maria Bohmeier; Alexandra K. Perras; Petra Schwendner; Elke Rabbow; Christine Moissl-Eichinger; Charles S. Cockell; Rüdiger Pukall; Pauline Vannier; Viggo Marteinsson; E. Monaghan; Pascale Ehrenfreund; L. Garcia-Descalzo; Felipe Gómez; Moustafa Malki; Ricardo Amils; Frédéric Gaboyer; Frances Westall; Patricia Cabezas; Nicolas Walter; Petra Rettberg

The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.


Frontiers in Microbiology | 2017

High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate

Kristina Beblo-Vranesevic; Harald Huber; Petra Rettberg

On Mars, significant amounts (0.4–0.6%) of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6%) during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7%) sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.


Frontiers in Microbiology | 2018

Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity

Petra Schwendner; Maria Bohmeier; Petra Rettberg; Kristina Beblo-Vranesevic; Frédéric Gaboyer; Christine Moissl-Eichinger; Alexandra K. Perras; Pauline Vannier; V. Marteinsson; L. Garcia-Descalzo; F. Gomez; Moustafa Malki; Ricardo Amils; Frances Westall; Andreas Riedo; E. Monaghan; Pascale Ehrenfreund; Patricia Cabezas; Nicolas Walter; Charles S. Cockell

Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.


Scientific Reports | 2017

Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment

Frédéric Gaboyer; Claude Le Milbeau; Maria Bohmeier; Petra Schwendner; Pauline Vannier; Kristina Beblo-Vranesevic; Elke Rabbow; Frédéric Foucher; Pascale Gautret; Régis Guégan; A. Richard; A. Sauldubois; P. Richmann; A. Perras; Christine Moissl-Eichinger; Charles S. Cockell; Petra Rettberg; Viggo Marteinsson; E. Monaghan; Pascale Ehrenfreund; L. Garcia-Descalzo; F. Gomez; Moustafa Malki; Ricardo Amils; Patricia Cabezas; Nicolas Walter; Frances Westall

The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.


Fems Microbiology Letters | 2018

Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions

Kristina Beblo-Vranesevic; Maria Bohmeier; Alexandra K. Perras; Petra Schwendner; Elke Rabbow; Christine Moissl-Eichinger; Charles S. Cockell; Pauline Vannier; V. Marteinsson; E. Monaghan; Pascale Ehrenfreund; L. Garcia-Descalzo; F. Gomez; Moustafa Malki; Ricardo Amils; Frédéric Gaboyer; Frances Westall; Patricia Cabezas; Nicolas Walter; Petra Rettberg

Abstract Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes.


Archives of Microbiology | 2017

Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms

Kristina Beblo-Vranesevic; Erwin A. Galinski; Reinhard Rachel; Harald Huber; Petra Rettberg


Archive | 2013

ESA CAVES: TRAINING ASTRONAUTS FOR SPACE EXPLORATION

Loredana Bessone; Kristina Beblo-Vranesevic; Quirico Antonello Cossu; Jo De Waele; Stefan Leuko; Paolo Marcia; Petra Rettberg; Laura Sanna; Francesco Sauro; Stefano Taiti; Linder Höhe


Archive | 2018

Studying the effects of galactic cosmic radiation on astro- and microbiological model systems

Akira Fujimori; Kristina Beblo-Vranesevic; Stefan Leuko; Ralf Moeller


Archive | 2017

Preservation and detection of biomarkers in mineralized communities and its potential link to the variations in ORP

L. Garcia-Descalzo; F. Gomez; Charles S. Cockell; Petra Schwendner; Frances Westall; Frédéric Gaboyer; Petra Rettberg; Kristina Beblo-Vranesevic; Maria Bohmeier; Elke Rabbow; Christine Moissl-Eichinger; Alexandra K. Perras; Ricardo Amils; Pascale Ehrenfreund; E. Monaghan; V. Marteinsson; Pauline Vannier; Moustafa Malki; Nicolas Walter; Patricia Cabezas


Archive | 2017

Microbial bioburden determination in frame of “Planetary Protection” activities

Kristina Beblo-Vranesevic; Petra Rettberg

Collaboration


Dive into the Kristina Beblo-Vranesevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frances Westall

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ricardo Amils

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Ehrenfreund

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Gaboyer

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge