Kristina Drott
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristina Drott.
Oncogene | 2004
Susanna Obad; Hans Brunnström; Johan Vallon-Christersson; Åke Borg; Kristina Drott; Urban Gullberg
The tumor suppressor gene p53 is a transcription factor that mediates both cell cycle arrest and apoptosis. Interestingly, p53 also induces differentiation of a number of tissues, including leukemic cells. However, although p53-mediated differentiation of leukemic U-937 cells depends on the transcriptional activity of p53, a p53 target gene mediating differentiation has hitherto not been identified. To screen for novel p53 target genes in leukemic cells, a cDNA microarray analysis was performed with U-937-4/ptsp53 cells, expressing a temperature-sensitive p53 mutant. We report that transcription of the Staf50 (stimulated transacting factor of 50 kDa) gene is upregulated in response to wild-type p53 in U-937-4, K562 and MCF-7 cells. Staf50 was directly activated by p53, as determined by the independence of de novo protein synthesis. Moreover, while the proximal promoter of Staf50 was found not to be p53 responsive, a functional enhancer-like p53-response element in intron 1 of the Staf50 gene was identified that was also transactivated by the p53-family member p73. Direct binding of p53 to the response element was shown by electrophoretic mobility shift analysis. Ectopic expression of Staf50 in U-937 cells resulted in reduced clonogenic growth. Moreover, levels of endogenous Staf50 mRNA correlated to all-trans retinoic acid-induced differentiation of promyelocytic NB-4 and HL60 cells, suggesting that Staf50 could be involved in proliferation and/or differentiation of leukemic cells.
Genes, Chromosomes and Cancer | 2008
Malin Ageberg; Kristina Drott; Tor Olofsson; Urban Gullberg; Anders Lindmark
The t(6;9)(p22;q34) chromosomal translocation is found in a subset of patients with acute myeloid leukemia (AML). The translocation results in a fusion between the nuclear phosphoprotein DEK and the nucleoporin NUP214 (previously CAN). The mechanism by which the fusion protein DEK‐NUP214 contributes to leukemia development has not been identified, and disruptions of normal cellular functions by DEK‐NUP214 have previously not been described. In the present study, a novel effect of the DEK‐NUP214 fusion protein is demonstrated. Our findings reveal a substantial increase in global protein synthesis in DEK‐NUP214 expressing cells. Furthermore, we conclude that this effect is not the result of dysregulated transcription but merely due to increased translation. Consistent with the association with AML, the increased protein synthesis mediated by DEK‐NUP214 is restricted to cells of the myeloid lineage. Analysis of potential mechanisms for regulating protein synthesis shows that expression of DEK‐NUP214 correlates to the phosphorylation of the translation initiation protein, EIF4E. The present data provide evidence that increase of translational activity constitutes a mechanism by which the leukemogenic effect of DEK‐NUP124 may be mediated.
Experimental Cell Research | 2010
Jessica Petersson; Per Lönnbro; Anna-Maria Herr; Matthias Mörgelin; Urban Gullberg; Kristina Drott
TRIM22 (Staf50), a member of the TRIM protein family, is an interferon (IFN)-inducible protein as well as a p53 target gene. The function of TRIM22 is largely unknown, but TRIM22 is suggested to play a role in viral defense by restriction of viral replication. In addition, TRIM22 may function as a ubiquitin E3 ligase. In contrast to previous reports showing solely cytoplasmic localization of exogenous TRIM22, we report here that endogenous TRIM22 is localized to both nucleus and cytosol in primary human mononuclear cells, as well as in the human osteosarcoma cell line U2OS. Moreover, we demonstrate a colocalization of TRIM22 with the centrosomes in primary cells as well as in U2OS cells, and show that this colocalization is independent of cell cycle phase. Additionally, our data suggest the colocalization with centrosomes to be independent on the microtubule network. Given that some viral protein assembly takes place in the close vicinity of the centrosome, our data suggest that important functions of TRIM22 such as regulation of viral replication and protein degradation may take place in the centrosome. However, further studies are warranted to certify this notion.
Experimental Cell Research | 2011
Malin Ageberg; Karin Rydström; Ola Lindén; Johan Linderoth; Mats Jerkeman; Kristina Drott
Prenylation is a post-translational hydrophobic modification of proteins, important for their membrane localization and biological function. The use of inhibitors of prenylation has proven to be a useful tool in the activation of apoptotic pathways in tumor cell lines. Rab geranylgeranyl transferase (Rab GGT) is responsible for the prenylation of the Rab family. Overexpression of Rab GGTbeta has been identified in CHOP refractory diffuse large B cell lymphoma (DLBCL). Using a cell line-based model for CHOP resistant DLBCL, we show that treatment with simvastatin, which inhibits protein farnesylation and geranylgeranylation, sensitizes DLBCL cells to cytotoxic treatment. Treatment with the farnesyl transferase inhibitor FTI-277 or the geranylgeranyl transferase I inhibitor GGTI-298 indicates that the reduction in cell viability was restricted to inhibition of geranylgeranylation. In addition, treatment with BMS1, a combined inhibitor of farnesyl transferase and Rab GGT, resulted in a high cytostatic effect in WSU-NHL cells, demonstrated by reduced cell viability and decreased proliferation. Co-treatment of BMS1 or GGTI-298 with CHOP showed synergistic effects with regard to markers of apoptosis. We propose that inhibition of protein geranylgeranylation together with conventional cytostatic therapy is a potential novel strategy for treating patients with CHOP refractory DLBCL.
Leukemia Research | 2016
Giorgia Montano; Tove Ullmark; Helena Jernmark-Nilsson; Gaetano Sodaro; Kristina Drott; Paola Costanzo; Karina Vidovic; Urban Gullberg
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter.
Biology of the Cell | 2012
Jessica Petersson; Malin Ageberg; Carl Sandén; Tor Olofsson; Urban Gullberg; Kristina Drott
The interferon (IFN)‐inducible protein TRIM22 (Staf50) is a member of the tripartite motif protein family and has been suggested a role in the regulation of viral replication as well as of protein ubiquitylation. In addition, we have previously shown that TRIM22 is a direct target gene for the tumour suppressor p53. Consistently, over‐expression of TRIM22 inhibits the clonogenic growth of monoblastic U937 cells, suggesting anti‐proliferative or cell death‐inducing effects.
Haematologica | 2017
Tove Ullmark; Linnea Järvstråt; Carl Sandén; Giorgia Montano; Helena Jernmark-Nilsson; Henrik Lilljebjörn; Andreas Lennartsson; Thoas Fioretos; Kristina Drott; Karina Vidovic; Björn Nilsson; Urban Gullberg
The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 −KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 −KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 −KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 −KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 −KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 −KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.
Oncotarget | 2017
Helena Jernmark Nilsson; Giorgia Montano; Tove Ullmark; Andreas Lennartsson; Kristina Drott; Linnea Järvstråt; Björn Nilsson; Karina Vidovic; Urban Gullberg
The Wilms’ tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.
Blood Advances | 2018
Kristina Drott; Hans Hagberg; Karin Papworth; Thomas Relander; Mats Jerkeman
The aims of the present study were to establish the maximally tolerated dose (MTD) of the histone deacetylase inhibitor valproate together with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) in patients with diffuse large B-cell lymphoma (DLBCL). A phase 1 dose escalation study of valproate together with R-CHOP followed by a dose expansion study using the established MTD of valproate was performed. MTD of valproate together with R-CHOP was established at 60 mg/kg per day, as higher doses resulted in auditory adverse events (AEs). In the study population, 2-year progression-free survival was 84.7% (95% confidence interval [CI], 73.2%-98%). The 2-year overall survival (OS) was 96.8% (n = 31; 95% CI, 90.8%-100%). These data were compared with 2 risk-factor matched populations of R-CHOP-treated patients from the Swedish Lymphoma Registry (cohort A, n = 330 and B, n = 165). As compared with the matched cohorts, we observed a statistically significant (P = .034 and 0.028, respectively) beneficial effect of the addition of valproate to R-CHOP on the OS in the studied population. In conclusion, addition of valproate to R-CHOP is a feasible strategy in first-line treatment of DLBCL. The proposed phase 2 dose is 60 mg/kg per day together with prednisone. Auditory AEs were unexpected and warrant close monitoring. Our findings suggest that drugs that target histone deacetylation may add benefit and are tolerable when combined with standard R-CHOP in DLBCL. The phase 1 trial was registered at www.clinicaltrials.gov as #NCT01622439.
Oncotarget | 2017
Annarita Scialdone; Muhammad Sharif Hasni; Jesper Kofoed Damm; Andreas Lennartsson; Urban Gullberg; Kristina Drott
Treatment with anti-CD20 antibodies is only moderately efficient in chronic lymphocytic leukemia (CLL), a feature which has been explained by the inherently low CD20 expression in CLL. It has been shown that CD20 is epigenetically regulated and that histone deacetylase inhibitors (HDACis) can increase CD20 expression in vitro in CLL. To assess whether HDACis can upregulate CD20 also in vivo in CLL, the HDACi valproate was given to three del13q/NOTCH1wt CLL patients and CD20 levels were analysed (the PREVAIL study). Valproate treatment resulted in expected global activating histone modifications suggesting HDAC inhibitory effects. However, although valproate induced expression of CD20 mRNA and protein in the del13q/NOTCH1wt I83-E95 CLL cell line, no such effects were observed in the patients studied. In contrast to the cell line, in patients valproate treatment resulted in transient recruitment of the transcriptional repressor EZH2 to the CD20 promoter, correlating to an increase of the repressive histone mark H3K27me3. This suggests that valproate-mediated induction of CD20 may be hampered by EZH2 mediated H3K27me3 in vivo in CLL. Moreover, valproate treatment resulted in induction of EZH2 and global H3K27me3 in patient cells, suggesting transcriptionally repressive effects of valproate in CLL. Our results suggest new in vivo mechanisms of HDACis which may have implications on the design of future clinical trials in B-cell malignancies.