Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Eriksson is active.

Publication


Featured researches published by Kristina Eriksson.


Journal of Virology | 2006

Lambda Interferon (IFN-λ), a Type III IFN, Is Induced by Viruses and IFNs and Displays Potent Antiviral Activity against Select Virus Infections In Vivo

Nina Ank; Hans West; Christina Bartholdy; Kristina Eriksson; Allan Randrup Thomsen; Søren R. Paludan

ABSTRACT Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-λ]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-λ1 and -λ2/3 in similar patterns. The IFN-λs were—unlike alpha/beta interferon (IFN-α/β)—induced directly by stimulation with IFN-α or -λ, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-λs have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-α potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-α reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-λ in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-λ completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-α, which had a more modest antiviral activity. Finally, pretreatment with IFN-λ enhanced the levels of IFN-γ in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-λ exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.


Vaccine | 2003

Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges.

Jan Holmgren; Cecil Czerkinsky; Kristina Eriksson; Ali Mharandi

Mucosal immunisation may be used both to prevent mucosal infections through the activation of anti-microbial immunity and to treat selected autoimmune, allergic or infectious-immunopathological disorders through the induction of antigen-specific tolerance. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can efficiently help to present vaccine or immunotherapy antigens to the mucosal immune system. Promising advances have recently been made in the design of more efficient mucosal adjuvants based on detoxified bacterial toxin derivatives or CpG motif-containing DNA, and perhaps even more striking progress has been done in the use of virus-like particles as mucosal delivery systems for vaccines and of cholera toxin B subunit as antigen vector for immunotherapeutic tolerance induction. However, it is a memento that two recently developed mucosal vaccines for human use against rotavirus diarrhoea and influenza were withdrawn after a short period in the market because of adverse reactions among the vaccinees, thus emphasising the difficult and challenging task also for mucosal immunisation of combining vaccine and adjuvant efficacy with safety and acceptability.


Journal of Virology | 2003

A Protective Role of Locally Administered Immunostimulatory CpG Oligodeoxynucleotide in a Mouse Model of Genital Herpes Infection

Ali M. Harandi; Kristina Eriksson; Jan Holmgren

ABSTRACT Unmethylated CpG dinucleotides in bacterial DNA or synthetic oligodeoxynucleotides (ODNs) are known as potent activators of the immune system and inducers of several Th1-associated immunomodulatory cytokines. We therefore investigated whether such a CpG-containing ODN (CpG ODN) given mucosally in the female genital tract could enhance innate immunity and protect against genital herpes infection. Groups of C57BL/6 mice were treated intravaginally with either CpG ODN or a non-CpG ODN control in the absence of any antigen either 2 days before or 4 h after an intravaginal challenge with a normally lethal dose of herpes simplex virus type 2 (HSV-2). Mice treated with CpG ODN exhibited significantly decreased titers of HSV-2 in their vaginal fluids compared with non-CpG ODN-treated mice. Furthermore, CpG ODN pretreatment significantly protected against development of disease and death compared to non-CpG ODN pretreatment. Most strikingly, CpG ODN conferred protection against disease and death even when given after the viral challenge. The CpG ODN-induced protection was associated with a rapid production of gamma interferon (IFN-γ), interleukin-12 (IL-12), IL-18, and RANTES in the genital tract mucosa following CpG ODN treatment. The observed protection appeared to be dependent on IFN-γ, IL-12, IL-18, and T cells, as CpG ODN pretreatment did not confer any significant protection in mice deficient in IFN-γ, IL-12, IL-18, or T cells. Further, a complete protective immunity to reinfection was elicited in CpG ODN-treated, HSV-2-challenged mice, suggesting a role for mucosally administered CpG ODN in inducing the development of an acquired immune response in addition to its potent stimulation of innate immunity.


Infection and Immunity | 2001

Cholera Toxin B Subunit as a Carrier Molecule Promotes Antigen Presentation and Increases CD40 and CD86 Expression on Antigen-Presenting Cells

Annie George-Chandy; Kristina Eriksson; Michael Lebens; Inger Nordström; Emma Schön; Jan Holmgren

ABSTRACT Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of mucosal antibody responses and/or induction of systemic T-cell tolerance to linked antigens. CTB binds with high affinity to GM1 ganglioside cell surface receptors. In this study, we evaluated how conjugation of a peptide or protein antigen to CTB by chemical coupling or genetic fusion influences the T-cell-activating capacity of different antigen-presenting cell (APC) subsets. Using an in vitro system in which antigen-pulsed APCs were incubated with antigen-specific, T-cell receptor-transgenic T cells, we found that the dose of antigen required for T-cell activation could be decreased >10,000-fold using CTB-conjugated compared to free antigen. In contrast, no beneficial effects were observed when CTB was simply admixed with antigen. CTB conjugation enhanced the antigen-presenting capacity not only of dendritic cells and B cells but also of macrophages, which expressed low levels of cell surface major histocompatibility complex (MHC) class II and were normally poor activators of naive T cells. Enhanced antigen-presenting activity by CTB-linked antigen resulted in both increased T-cell proliferation and increased interleukin-12 and gamma interferon secretion and was associated with up-regulation of CD40 and CD86 on the APC surface. These results imply that conjugation to CTB dramatically lowers the threshold concentration of antigen required for immune cell activation and also permits low-MHC II-expressing APCs to prime for a specific immune response.


Current Opinion in Immunology | 2002

Recent advances in mucosal vaccines and adjuvants.

Kristina Eriksson; Jan Holmgren

Mucosal vaccines may be used both to prevent mucosal infections through the activation of antimicrobial immunity and to treat systemic inflammatory diseases through the induction of antigen-specific mucosal tolerance. New, efficient mucosal adjuvants for human use have been designed based on, amongst others, bacterial toxins and their derivatives, CpG-containing DNA, and different cytokines and chemokines, with the aim of improving the induction of mucosal Th1 and Th2 responses. Mucosal delivery systems, in particular virus-like particles, have been shown to enhance the binding, uptake and half-life of the antigens, as well as target the vaccine to mucosal surfaces. DNA vaccines are currently being developed for administration at mucosal surfaces. However, there have also been failures, such as the withdrawal of an oral vaccine against rotavirus diarrhea and a nasal vaccine against influenza, because of their potential side effects.


Journal of Immunology | 2009

Lipopolysaccharide Sensitizes Neonatal Hypoxic-Ischemic Brain Injury in a MyD88-Dependent Manner

Xiaoyang Wang; Linnea Stridh; Wenli Li; Justin M. Dean; Anders Elmgren; Liming Gan; Kristina Eriksson; Henrik Hagberg; Carina Mallard

Neurological deficits in children, including cerebral palsy, are associated with prior infection during the perinatal period. Experimentally, we have shown that pre-exposure to the Gram-negative component LPS potentiates hypoxic-ischemic (HI) brain injury in newborn animals. LPS effects are mediated by binding to TLR4, which requires recruitment of the MyD88 adaptor protein or Toll/IL-1R domain-containing adapter inducing IFN-β for signal transduction. In this study, we investigated the role of MyD88 in neonatal brain injury. MyD88 knockout (MyD88 KO) and wild-type mice were subjected to left carotid artery ligation and 10% O2 for 50 min on postnatal day 9. LPS or saline were administered i.p. at 14 h before HI. At 5 days after HI in wild-type mice, LPS in combination with HI caused a significant increase in gray and white matter tissue loss compared with the saline-HI group. By contrast, in the MyD88 KO mice there was no potentiation of brain injury with LPS-HI. MyD88 KO mice exhibited reduced NFκB activation and proinflammatory cytokine-chemokine expression in response to LPS. The number of microglia and caspase-3 activation was increased in the brain of MyD88 KO mice after LPS exposure. Collectively, these findings indicate that MyD88 plays an essential role in LPS-sensitized HI neonatal brain injury, which involves both inflammatory and caspase-dependent pathways.


Journal of General Virology | 2001

Differential roles of B cells and IFN-gamma-secreting CD4(+) T cells in innate and adaptive immune control of genital herpes simplex virus type 2 infection in mice.

Ali M. Harandi; Bo Svennerholm; Jan Holmgren; Kristina Eriksson

The role of B, CD4(+) T and CD8(+) T cells in both primary genital infection with attenuated herpes simplex virus type 2 (HSV-2) and development of protective immunity to a later challenge with virulent HSV-2 using lymphocyte-deficient mice has been elucidated. Following primary inoculation with attenuated thymidine kinase-deficient (TK(-)) HSV-2, B cell-deficient (microMT) mice developed a local viraemia and transient genital inflammation, suggesting a role for B cells in the innate control of local infection and inflammation. Natural antibodies are implicated in this process, as passive transfer of normal serum into microMT mice significantly reduced HSV-2 TK(-) shedding in the vaginal lumen, although it did not affect subsequent inflammation. Protection against lethal HSV-2 challenge was noted in HSV-2-vaccinated wild-type, CD8(+) T cell-deficient and microMT mice and was characterized by strong virus-specific IFN-gamma responses in vitro and delayed type hypersensitivity (DTH) responses in vivo. In contrast, CD4(+) T cell-deficient (CD4(-/-)) mice had impaired HSV-2-specific IFN-gamma production and DTH responses and succumbed rapidly to genital HSV-2 challenge. However, protective responses to HSV-2 could be induced in HSV-2-vaccinated CD4(-/-) mice by treatment with recombinant IFN-gamma. Taken together, these results suggest that CD4(+) T cells secreting IFN-gamma are critical for immune protection against lethal genital HSV-2 re-infection, whereas B cells/natural antibodies have anti-viral and -inflammatory effects in the innate control of a primary infection.


Infection and Immunity | 2003

Cholera Toxin and Its B Subunit Promote Dendritic Cell Vaccination with Different Influences on Th1 and Th2 Development

Kristina Eriksson; Margareta Fredriksson; Inger Nordström; Jan Holmgren

ABSTRACT Cholera toxin (CT) is a strong mucosal adjuvant for codelivered antigens, whereas its nontoxic B subunit (CTB) is an efficient mucosal carrier molecule for the generation of immune responses to linked antigens. We investigated the effects of CT and CTB on the immunogenicity of in vitro-treated antigen-pulsed dendritic cells (DC) following intravenous injection into mice. Prior to infusion, DC were pulsed for 90 min with either free ovalbumin (OVA), OVA mixed with CT or CTB, or chemical conjugates of OVA with CT and CTB (OVA-CT and OVA-CTB). DC pulsed with OVA or with OVA and CTB gave rise to modest antibody and T-cell responses. Conjugation of OVA with CTB enhanced both the subsequent B-cell and T-cell responses to OVA and preferentially induced Th2 responses. CT was shown to be a strong adjuvant when it was coadministered to DC with OVA and was even stronger when it was coadministered with OVA-CTB and primed for a mixed Th1-Th2 response. The antibody and T-cell responses were further enhanced if OVA was coupled to CT, implying that CT can utilize a combined carrier and adjuvant function vis-a-vis linked antigens for DC vaccination. The immunopotentiating capacity of CT- and CTB-linked antigen was associated with both upregulated secretion of interleukin-1β by the pulsed DC and increased expression of CD80 and CD86 on the DC surface. These results imply that CT and CTB can be used to both markedly increase and partially direct the DC vaccine-induced immune response with respect to Th1 and Th2 responses, which has obvious implications for DC-based vaccine development.


Journal of Virology | 2001

Interleukin-12 (IL-12) and IL-18 Are Important in Innate Defense against Genital Herpes Simplex Virus Type 2 Infection in Mice but Are Not Required for the Development of Acquired Gamma Interferon-Mediated Protective Immunity

Ali M. Harandi; Bo Svennerholm; Jan Holmgren; Kristina Eriksson

ABSTRACT Using a combination of gene-targeted mice and neutralizing antibodies, we showed that interleukin-12 (IL-12) and IL-18 are important in the innate control of genital herpes simplex virus type 2 infection but were not found to be critical, either singly or in combination, for the development of a protective gamma interferon-mediated immune response.


Arthritis Research & Therapy | 2008

Raised intrathecal levels of APRIL and BAFF in patients with systemic lupus erythematosus: relationship to neuropsychiatric symptoms.

Annie George-Chandy; Estelle Trysberg; Kristina Eriksson

IntroductionThe tumour necrosis factor (TNF) family ligands BAFF (B-cell activating factor of TNF family) and APRIL (a proliferation-inducing ligand) are essential for B-cell survival and function. Elevated serum levels of BAFF and APRIL have been reported earlier in patients with systemic lupus erythematosus (SLE). Since autoantibody formation in the central nervous system (CNS) is a distinct feature of neuropsychiatric SLE (NPSLE), we have investigated whether NPSLE is associated with an enhanced intrathecal production of APRIL and BAFF.MethodsLevels of BAFF and APRIL in cerebrospinal fluid (CSF) and serum from healthy controls, SLE patients without CNS involvement, and patients with NPSLE were determined by enzyme-linked immunosorbent assay. Interleukin-6 (IL-6) levels were determined by an IL-6-specific bioassay.ResultsSLE patients had levels of APRIL in CSF that were more than 20-fold higher and levels of BAFF in CSF that were more than 200-fold higher than those of healthy controls. Separate analyses of SLE patients with and without CNS involvement revealed that NPSLE patients had enhanced levels of APRIL in CSF. BAFF and APRIL were likely produced locally in the CNS as CSF and serum levels did not correlate. Moreover, CSF levels of APRIL correlated with BAFF but not with IL-6, suggesting that APRIL and BAFF in the CNS are regulated together but that they are produced independently of IL-6.ConclusionTo our knowledge this is the first study to show elevated levels of BAFF and APRIL in CSF of SLE patients. APRIL was augmented in NPSLE patients compared with SLE patients without CNS involvement. APRIL and BAFF antagonists breeching the blood-brain barrier therefore could have beneficial effects on SLE patients, in particular patients with NPSLE.

Collaboration


Dive into the Kristina Eriksson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Holmgren

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecil Czerkinsky

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ali M. Harandi

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Lars Bellner

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Petra Tunbäck

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Bo Svennerholm

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge