Kristina Giesel
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristina Giesel.
Classical and Quantum Gravity | 2007
Kristina Giesel; Thomas Thiemann
We introduce a new top down approach to canonical quantum gravity, called algebraic quantum gravity (AQG). The quantum kinematics of AQG is determined by an abstract *-algebra generated by a countable set of elementary operators labelled by an algebraic graph. The quantum dynamics of AQG is governed by a single master constraint operator. While AQG is inspired by loop quantum gravity (LQG), it differs drastically from it because in AQG there is fundamentally no topology or differential structure. A natural Hilbert space representation acquires the structure of an infinite tensor product (ITP) whose separable strong equivalence class Hilbert subspaces (sectors) are left invariant by the quantum dynamics. The missing information about the topology and differential structure of the spacetime manifold as well as about the background metric to be approximated is supplied by coherent states. Given such data, the corresponding coherent state defines a sector in the ITP which can be identified with a usual QFT on the given manifold and background. Thus, AQG contains QFT on all curved spacetimes at once, possibly has something to say about topology change and provides the contact with the familiar low energy physics. In particular, in two companion papers we develop semiclassical perturbation theory for AQG and LQG and thereby show that the theory admits a semiclassical limit whose infinitesimal gauge symmetry agrees with that of general relativity. In AQG everything is computable with sufficient precision and no UV divergences arise due to the background independence of the fundamental combinatorial structure. Hence, in contrast to lattice gauge theory on a background metric, no continuum limit has to be taken. There simply is no lattice regulator that must be sent to zero.
Classical and Quantum Gravity | 2006
Kristina Giesel; Thomas Thiemann
In this paper, we provide the techniques and proofs for the results presented in our companion paper concerning the consistency check on volume and triad operator quantization in loop quantum gravity.
Classical and Quantum Gravity | 2010
Kristina Giesel; Stefan Hofmann; Thomas Thiemann; Oliver Winkler
Linear cosmological perturbation theory is pivotal to a theoretical understanding of current cosmological experimental data provided e.g. by cosmic microwave anisotropy probes. A key issue in that theory is to extract the gauge-invariant degrees of freedom which allow unambiguous comparison between theory and experiment. When one goes beyond first (linear) order, the task of writing the Einstein equations expanded to nth order in terms of quantities that are gauge-invariant up to terms of higher orders becomes highly non-trivial and cumbersome. This fact has prevented progress for instance on the issue of the stability of linear perturbation theory and is a subject of current debate in the literature. In this series of papers we circumvent these difficulties by passing to a manifestly gauge-invariant framework. In other words, we only perturb gauge-invariant, i.e. measurable quantities, rather than gauge variant ones. Thus, gauge invariance is preserved non-perturbatively while we construct the perturbation theory for the equations of motion for the gauge-invariant observables to all orders. In this first paper we develop the general framework which is based on a seminal paper due to Brown and Kuchař as well as the relational formalism due to Rovelli. In the second, companion, paper we apply our general theory to FRW cosmologies and derive the deviations from the standard treatment in linear order. As it turns out, these deviations are negligible in the late universe, thus our theory is in agreement with the standard treatment. However, the real strength of our formalism is that it admits a straightforward and unambiguous, gauge-invariant generalization to higher orders. This will also allow us to settle the stability issue in a future publication.
Classical and Quantum Gravity | 2007
Kristina Giesel; Thomas Thiemann
In the previous paper (Giesel and Thiemann 2006 Conceptual setup Preprint gr-qc/0607099) a new combinatorial and thus purely algebraical approach to quantum gravity, called algebraic quantum gravity (AQG), was introduced. In the framework of AQG, existing semiclassical tools can be applied to operators that encode the dynamics of AQG such as the master constraint operator. In this paper, we will analyse the semiclassical limit of the (extended) algebraic master constraint operator and show that it reproduces the correct infinitesimal generators of general relativity. Therefore, the question of whether general relativity is included in the semiclassical sector of the theory, which is still an open problem in LQG, can be significantly improved in the framework of AQG. For the calculations, we will substitute SU(2) with U(1)3. That this substitution is justified will be demonstrated in the third paper (Giesel and Thiemann 2006 Semiclassical perturbation theory Preprint gr-qc/0607101) of this series.
Classical and Quantum Gravity | 2007
Kristina Giesel; Thomas Thiemann
In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non – Abelean group SU(2) by the Abelean group U(1) 3 in the calculations. The mere reason why that substitution was performed at all is that in the non – Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in ~ with error control. That is, in particular matrix elements of fractional powers of the volume operator can be computed with extremely high precision for sufficiently large power of ~ in the ~ expansion. With this new tool, the non – Abelean calculation, although technically more involved, is then exactly analogous to the Abelean calculation, thus justifying the Abelean analysis in retrospect. The results of this paper turn AQG into a calculational discipline.
Classical and Quantum Gravity | 2010
Kristina Giesel; Stefan Hofmann; Thomas Thiemann; Oliver Winkler
In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einsteins equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.
Classical and Quantum Gravity | 2010
Kristina Giesel; Johannes Tambornino; Thomas Thiemann
The construction of Dirac observables, that is gauge invariant objects, in General Relativity is technically more complicated than in other gauge theories such as the standard model due to its more complicated gauge group which is closely related to the group of spacetime diffeomorphisms. However, the explicit and usually cumbersome expression of Dirac observables in terms of gauge non invariant quantities is irrelevant if their Poisson algebra is sufficiently simple. Precisely that can be achieved by employing the relational formalism and a specific type of matter proposed originally by Brown and Kuchayr, namely pressureless dust fields. Moreover one is able to derive a compact expression for a physical Hamiltonian that drives their physical time evolution. The resulting gauge invariant Hamiltonian system is obtained by Higgs – ing the dust scalar fields and has an infinite number of conserved charges which force the Goldstone bosons to decouple from the evolution. In previous publications we have shown that explicitly for cosmological perturbations. In this article we analyse the spherically symmetric sector of the theory and it turns out that the solutions are in one–to–one correspondence with the class of Lemaitre–Tolman– Bondi metrics. Therefore the theory is capable of properly describing the whole class of gravitational experiments that rely on the assumption of spherical symmetry.
International Journal of Modern Physics A | 2008
Kristina Giesel
We give a brief introduction to Dirac observables and review the general construction of such Dirac observables for constrained systems in the framework of the Relational Formalism introduced by Rovelli1 and further mathematically developed by Dittrich.2 Finally we birefly discuss appropriate clocks for General Relativity and the evolution of observables generated by a so called physical Hamiltonian.
Classical and Quantum Gravity | 2018
Kristina Giesel; Adrian Herzog; Parampreet Singh
Using the extended ADM-phase space formulation in the canonical framework we analyze the relationship between various gauge choices made in cosmological perturbation theory and the choice of geometrical clocks in the relational formalism. We show that various gauge invariant variables obtained in the conventional analysis of cosmological perturbation theory correspond to Dirac observables tied to a specific choice of geometrical clocks. As examples, we show that the Bardeen potentials and the Mukhanov-Sasaki variable emerge naturally in our analysis as observables when gauge fixing conditions are determined via clocks in the Hamiltonian framework. Similarly other gauge invariant variables for various gauges can be systematically obtained. We demonstrate this by analyzing five common gauge choices: longitudinal, spatially flat, uniform field, synchronous and comoving gauge. For all these, we apply the observable map in the context of the relational formalism and obtain the corresponding Dirac observables associated with these choices of clocks. At the linear order, our analysis generalizes the existing results in canonical cosmological perturbation theory twofold. On the one hand we can include also gauges that can only be analyzed in the context of the extended ADM-phase space and furthermore, we obtain a set of natural gauge invariant variables, namely the Dirac observables, for each considered choice of gauge conditions. Our analysis provides insights on which clocks should be used to extract the relevant natural physical observables both at the classical and quantum level. We also discuss how to generalize our analysis in a straightforward way to higher orders in the perturbation theory to understand gauge conditions and the construction of gauge invariant quantities beyond linear order.
arXiv: General Relativity and Quantum Cosmology | 2009
Kristina Giesel; Johannes Tambornino; Thomas Thiemann