Kristina O. Kvashnina
Helmholtz-Zentrum Dresden-Rossendorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristina O. Kvashnina.
Journal of the American Chemical Society | 2010
Pieter Glatzel; Jagdeep Singh; Kristina O. Kvashnina; Jeroen A. van Bokhoven
An element-selective study of the occupied and unoccupied density of electronic states in Pt nanoparticles was performed using hard X-ray resonant inelastic X-ray scattering (RIXS). An opening in the valence d band is observed when CO is adsorbed. The gap originates from bonding and antibonding orbitals between Pt and CO. The adsorption of CO blocks sites and changes the electronic structure, thus further passivating the catalytic activity of Pt. The experimental results are supported by full multiple scattering calculations.
ACS Nano | 2013
Jean-Daniel Cafun; Kristina O. Kvashnina; Eudald Casals; Victor Puntes; Pieter Glatzel
The catalytic performance of ceria nanoparticles is generally attributed to active sites on the particle surface. The creation of oxygen vacancies and thus nonstoichiometric CeO(2-δ) has been proposed to result in Ce(3+) sites with unpaired f electrons which can be oxidized to spinless Ce(4+) ions during catalytic reactions. We monitored the Ce electronic structure during the synthesis and catalase mimetic reaction of colloidal ceria nanoparticles under in situ conditions. By means of high-energy resolution hard X-ray spectroscopy, we directly probed the Ce 4f and 5d orbitals. We observe pronounced changes of the Ce 5d bands upon reduction of the particle size and during the catalytic reaction. The Ce 4f orbitals, however, remain unchanged, and we do not observe any significant number of spin-unpaired Ce(3+) sites even for catalytically active small (3 nm) particles with large surface to bulk ratio. This confirms strong orbital mixing between Ce and O, and the Ce spin state is conserved during the reaction. The particles show an increase of the interatomic distances between Ce and O during the catalytic decomposition of hydrogen peroxide. The redox partner is therefore not a local Ce(3+) site, but the electron density that is received and released during the catalytic reaction is delocalized over the atoms of the nanoparticle. This invokes the picture of an electron sponge.
Physical Review Letters | 2013
Kristina O. Kvashnina; Sergei M. Butorin; Philippe M. Martin; Pieter Glatzel
This paper provides a brief overview of applications of advanced X-ray spectroscopic techniques that take advantage of the resonant inelastic X-ray scattering (RIXS) in the hard and tender x-ray range and have recently become available for studying the electronic structure of actinides. We focus here on the high-energy-resolution X-ray absorption near edge structure (XANES) and core-to-core and core-to-valence RIXS spectroscopies at the U L and M edges of uranium compounds. The spectral features are analyzed using a number of theoretical methods, such as the density functional theory in the local density approximation with an added Coulomb interaction (LDA+U) and full multiple scattering (FEFF) and ab-initio finite difference method near-edge structure (FDMNES) codes. In connection with presented results, the capabilities and limitations of the experimental techniques and theoretical methods are discussed.
Nanoscale | 2012
Kai Wilkinson; Barbro Ekstrand-Hammarström; Linnea Ahlinder; Karolin Guldevall; Robert Pazik; Leszek Kępiński; Kristina O. Kvashnina; Sergei M. Butorin; Hjalmar Brismar; Björn Önfelt; Lars Österlund; Gulaim A. Seisenbaeva; Vadim G. Kessler
Nanoparticles of iron oxide generated by wearing of vehicles have been modelled with a tailored solution of size-uniform engineered magnetite particles produced by the Bradley reaction, a solvothermal metal-organic approach rendering hydrophilic particles. The latter does not bear any pronounced surface charge in analogy with that originating from anthropogenic sources in the environment. Physicochemical properties of the nanoparticles were thoroughly characterized by a wide range of methods, including XPD, TEM, SEM, DLS and spectroscopic techniques. The magnetite nanoparticles were found to be sensitive for transformation into maghemite under ambient conditions. This process was clearly revealed by Raman spectroscopy for high surface energy magnetite particles containing minor impurities of the hydromaghemite phase and was followed by quantitative measurements with EXAFS spectroscopy. In order to assess the toxicological effects of the produced nanoparticles in humans, with and without surface modification with ATP (a model of bio-corona formed in alveolar liquid), a pathway of potential uptake and clearance was modelled with a sequence of in vitro studies using A549 lung epithelial cells, lymphocyte 221-B cells, and 293T embryonal kidney cells, respectively. Raman microscopy unambiguously showed that magnetite nanoparticles are internalized within the A549 cells after 24 h co-incubation, and that the ATP ligand is retained on the nanoparticles throughout the uptake process. The toxicity of the nanoparticles was estimated using confocal fluorescence microscopy and indicated no principal difference for unmodified and modified particles, but revealed considerably different biochemical responses. The IL-8 cytokine response was found to be significantly lower for the magnetite nanoparticles compared to TiO(2), while an enhancement of ROS was observed, which was further increased for the ATP-modified nanoparticles, implicating involvement of the ATP signalling pathway in the epithelium.
Small | 2014
Eudald Casals; Raquel Barrena; Ana García; Edgar González; Lucía Delgado; Martí Busquets-Fité; Xavier Font; Jordi Arbiol; Pieter Glatzel; Kristina O. Kvashnina; Antoni Sánchez; Victor Puntes
A novel concept of dosing iron ions using Fe3O4 engineered nanoparticles is used to improve biogas production in anaerobic digestion processes. Since small nanoparticles are unstable, they can be designed to provide ions in a controlled manner, and the highest ever reported improvement of biogas production is obtained. The nanoparticles evolution during operation is followed by an array of spectroscopic techniques.
Journal of Physics: Condensed Matter | 2016
Roman Gumeniuk; Walter Schnelle; Mahmoud A. Ahmida; M. M. Abd-Elmeguid; Kristina O. Kvashnina; Alexander A. Tsirlin; Andreas Leithe-Jasper; Christoph Geibel
We synthesized a high-quality sample of the boride Eu4Pd(29+x)B8 (x = 0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems.
Environmental Science & Technology | 2017
Ivan Pidchenko; Kristina O. Kvashnina; Tadahiro Yokosawa; Nicolas Finck; Sebastian Bahl; Dieter Schild; Robert Polly; Elke Bohnert; André Rossberg; Jörg Göttlicher; Kathy Dardenne; Jörg Rothe; Thorsten Schäfer; Horst Geckeis; Tonya Vitova
Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).
Journal of Physics: Condensed Matter | 2007
Kristina O. Kvashnina; Sergei M. Butorin; Anders Modin; Inna Soroka; Moreno Marcellini; Jinghua Guo; Lars Werme; Joseph Nordgren
The possibilities for using x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the Cu oxidation state and changes in the electronic structure during interaction between copper and ground-water solutions were examined. Surface modifications induced by chemical reactions of oxidized 100 A Cu films with Cl−, SO42− and HCO3− ions in aqueous solutions with various concentrations were studied in situ using liquid cells. Copper corrosion processes in ground water were monitored for up to nine days. By comparing Cu 2p–3d, 4s transitions for a number of reference substances previously measured, changes in electronic structure of the Cu films were analysed. The XAS and RIXS spectral shape at the Cu edge, the chemical shift of the main line for Cu2+, and the energy positions of the observed satellites served as a tool for monitoring the changes during the reaction. It was found that the pH value and the Cl− concentration in solutions strongly affect the speed of the corrosion reaction.
Journal of Synchrotron Radiation | 2016
Kristina O. Kvashnina; Andreas C. Scheinost
This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5-25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°-89°. The instrument has been tested at high and intermediate incident energies, i.e. at the Zr K-edge and at the Au L3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies.
Inorganic Chemistry | 2015
Anna L. Smith; Philippe E. Raison; Laura Martel; Damien Prieur; Thibault Charpentier; Gilles Wallez; Emmanuelle Suard; Andreas C. Scheinost; Christoph Hennig; Philippe M. Martin; Kristina O. Kvashnina; Anthony K. Cheetham; R.J.M. Konings
The crystal structure of trisodium uranate, which forms following the interaction between sodium and hyperstoichiometric urania, has been solved for the first time using powder X-ray and neutron diffraction, X-ray absorption near-edge structure spectroscopy, and solid-state (23)Na multiquantum magic angle spinning nuclear magnetic resonance. The compound, isostructural with Na3BiO4, has monoclinic symmetry, in space group P2/c. Moreover, it has been shown that this structure can accommodate some cationic disorder, with up to 16(2)% sodium on the uranium site, corresponding to the composition α-Na3(U1-x,Nax)O4 (0 < x < 0.18). The α phase adopts a mixed valence state with the presence of U(V) and U(VI). The two polymorphs of this compound described in the literature, m- and β-Na3(U1-x,Nax)O4, have also been investigated, and their relationship to the α phase has been established. The completely disordered low-temperature cubic phase corresponds to a metastable phase. The semiordered high-temperature β phase is cubic, in space group Fd3̅m.