Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristine B. Gutzkow is active.

Publication


Featured researches published by Kristine B. Gutzkow.


The FASEB Journal | 2013

Paternal lifestyle as a potential source of germline mutations transmitted to offspring

Joost O. Linschooten; Nicole Verhofstad; Kristine B. Gutzkow; Ann-Karin Olsen; Carole L. Yauk; Yvonne Oligschläger; Gunnar Brunborg; Frederik J. Van Schooten; Roger W. L. Godschalk

Paternal exposure to high levels of radioactivity causes heritable germline minisatellite mutations. However, the effect of more general paternal exposures, such as cigarette smoking, on germline mutations remains unexplored. We analyzed two of the most commonly used minisatellite loci (CEB1 and B6.7) to identify germline mutations in blood samples of complete mother‐father‐child triads from the Norwegian Mother and Child Cohort Study (MoBa). The presence of mutations was subsequently related to general lifestyle factors, including paternal smoking before the partner became pregnant. Paternally derived mutations at the B6.7 locus (mutation frequency 0.07) were not affected by lifestyle. In contrast, high gross yearly income as a general measure of a healthy lifestyle coincided with low‐mutation frequencies at the CEB1 locus (P=0.047). Income was inversely related to smoking behavior, and paternally derived CEB1 mutations were dose dependently increased when the father smoked in the 6 mo before pregnancy, 0.21 vs. 0.05 in smoking and nonsmoking fathers, respectively (P=0.061). These results suggest that paternal lifestyle can affect the chance of heritable mutations in unstable repetitive DNA sequences. To our knowledge, this is the first study reporting an effect of lifestyle on germline minisatellite mutation frequencies in a human population with moderate paternal exposures.—Linschooten, J. O., Verhofstad, N., Gutzkow, K., Olsen, A.‐K., Yauk, C., Oligschläger, Y., Brunborg, G., van Schooten, F. J., Godschalk, R. W. L. Paternal lifestyle as a potential source of germline mutations transmitted to offspring. FASEB J. 27, 2873‐2879 (2013). www.fasebj.org


Environmental Health Perspectives | 2014

The Human Early-Life Exposome (HELIX): Project Rationale and Design

Martine Vrijheid; Rémy Slama; Oliver Robinson; Leda Chatzi; Muireann Coen; Peter Van Den Hazel; Cathrine Thomsen; John Wright; Toby J. Athersuch; Narcis Avellana; Xavier Basagaña; Céline Brochot; Luca Bucchini; Mariona Bustamante; Angel Carracedo; Maribel Casas; Xavier Estivill; Lesley Fairley; Diana van Gent; Juan R. González; Berit Granum; Regina Gražulevicˇiene; Kristine B. Gutzkow; Jordi Julvez; Hector C. Keun; Manolis Kogevinas; Rosemary Rc McEachan; Helle Margrete Meltzer; Eduard Sabidó; Per E. Schwarze

Background: Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure–health effect relationships. The “exposome” concept encompasses the totality of exposures from conception onward, complementing the genome. Objectives: The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the “early-life exposome.” Here we describe the general design of the project. Methods: In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother–child pairs, and biomarkers will be measured in a subset of 1,200 mother–child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure–response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. Conclusions: HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome. Citation: Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagaña X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Gražulevičienė R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RR, Meltzer HM, Sabidó E, Schwarze PE, Siroux V, Sunyer J, Want EJ, Zeman F, Nieuwenhuijsen MJ. 2014. The Human Early-Life Exposome (HELIX): project rationale and design. Environ Health Perspect 122:535–544; http://dx.doi.org/10.1289/ehp.1307204


Nanotoxicology | 2012

Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring

Petra Jackson; Karin Sørig Hougaard; Anne Mette Zenner Boisen; Nicklas Raun Jacobsen; Keld Alstrup Jensen; Peter Møller; Gunnar Brunborg; Kristine B. Gutzkow; Ole Andersen; Steffen Loft; Ulla Vogel; Håkan Wallin

Abstract Effects of maternal pulmonary exposure to carbon black (Printex 90) on gestation, lactation and DNA strand breaks were evaluated. Time-mated C57BL/6BomTac mice were exposed by inhalation to 42 mg/m3 Printex 90 for 1 h/day on gestation days (GD) 8–18, or by four intratracheal instillations on GD 7, 10, 15 and 18, with total doses of 11, 54 and 268 μg/animal. Dams were monitored until weaning and some offspring until adolescence. Inflammation was assessed in maternal bronchoalveolar lavage (BAL) 3–5 days after exposure, and at weaning. Levels of DNA strand breaks were assessed in maternal BAL cells and liver, and in offspring liver. Persistent lung inflammation was observed in exposed mothers. Inhalation exposure induced more DNA strand breaks in the liver of mothers and their offspring, whereas intratracheal instillation did not. Neither inhalation nor instillation affected gestation and lactation. Maternal inhalation exposure to Printex 90-induced liver DNA damage in the mothers and the in utero exposed offspring.


Particle and Fibre Toxicology | 2012

Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint

Anne T. Saber; Nicklas Raun Jacobsen; Alicja Mortensen; Józef Szarek; Petra Jackson; Anne Mette Madsen; Keld Alstrup Jensen; Ismo K. Koponen; Gunnar Brunborg; Kristine B. Gutzkow; Ulla Vogel; Håkan Wallin

BackgroundLittle is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2.MethodsMice received a single intratracheal instillation of 18, 54 and 162 μg of NanoTiO2 or 54, 162 and 486 μg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control.ResultsThere was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points.ConclusionsPulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.


International Journal of Hygiene and Environmental Health | 2012

Placental transfer of perfluorinated compounds is selective--a Norwegian Mother and Child sub-cohort study.

Kristine B. Gutzkow; Line Småstuen Haug; Cathrine Thomsen; Azemira Sabaredzovic; Georg Becher; Gunnar Brunborg

Perfluorinated compounds (PFCs) comprise a large group of man-made fluorinated chemicals used in a number of consumer products and industrial applications. PFCs have shown to be persistent, bio-accumulative and widespread in the environment. Animal studies have demonstrated hepatotoxicity, immunotoxicity, developmental toxicity as well as hormonal effects. We investigated prenatal exposure to several PFCs and detected up to seven different PFCs in 123 paired samples of human maternal and cord blood, from a subcohort of the Norwegian Mother and Child Cohort Study (MoBa). The maternal and foetal levels were significantly correlated for all PFCs tested with median PFC concentrations in cord blood ranging between 30 and 79% of the maternal concentrations, demonstrating placental passage. The composition of the different PFCs varied between cord and maternal blood, with a higher proportion of shorter chained PFCs together with a higher amount of the branched isomers of perfluorooctane sulfonate (PFOS) in cord blood. Additionally, the sulfonate group seems to impede transfer efficiency. This indicates a selective placental passage of the different PFCs and hence a specific foetal exposure.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Towards a more reliable comet assay: Optimising agarose concentration, unwinding time and electrophoresis conditions

Amaya Azqueta; Kristine B. Gutzkow; Gunnar Brunborg; Andrew R. Collins

The comet assay is now the method of choice for measuring most kinds of DNA damage in cells. However, due to the lack of a standardised protocol inter-laboratory comparisons are of limited value. The aim of this paper is to demonstrate how small changes in comet-assay variables may significantly affect the results. We examined the effect of varying agarose concentrations, alkaline unwinding time, electrophoresis time, voltage and current, by use of two cell types, viz. human peripheral blood lymphocytes and the lymphoblastoid cell line TK-6. All these variables have marked effects on assay performance and, therefore, on the determination of DNA damage. Here we identify factors of particular importance.


Mutagenesis | 2011

The influence of scoring method on variability in results obtained with the comet assay

Amaya Azqueta; Silja Meier; Catherine C. Priestley; Kristine B. Gutzkow; Gunnar Brunborg; Jérôme Sallette; Francoise Soussaline; Andrew R. Collins

As part of a project to develop high throughput versions of the comet assay (single cell gel electrophoresis), with a consequent need for more efficient scoring, we have compared the performance of visual scoring, automated and semi-automated image analysis when assessing comets in the same set of gels from dose-response experiments with typical DNA-damaging agents. Human lymphoblastoid TK-6 cells were treated with concentrations of methylmethanesulphonate between 0.04 and 0.6 mM, and peripheral human lymphocytes were incubated, after embedding in agarose, with H(2)O(2) concentrations from 2.5 to 160 μM. All three scoring methods proved capable of detecting a significant level of damage at the lowest concentration of each agent. Visual scoring systematically overestimates low levels of damage compared with computerised image analysis; on the other hand, heavily damaged comets are less efficiently detected with image analysis. Overall, the degree of agreement between the scoring methods is within acceptable limits according to a Bland-Altman analysis.


Mutagenesis | 2013

High-throughput comet assay using 96 minigels

Kristine B. Gutzkow; Torgrim M. Langleite; Silja Meier; Anne Graupner; Andrew R. Collins; Gunnar Brunborg

The single-cell gel electrophoresis--the comet assay--has proved to be a sensitive and relatively simple method that is much used in research for the analysis of specific types of DNA damage, and its use in genotoxicity testing is increasing. The efficiency of the comet assay, in terms of number of samples processed per experiment, has been rather poor, and both research and toxicological testing should profit from an increased throughput. We have designed and validated a format involving 96 agarose minigels supported by a hydrophilic polyester film. Using simple technology, hundreds of samples may be processed in one experiment by one person, with less time needed for processing, less use of chemicals and requiring fewer cells per sample. Controlled electrophoresis, including circulation of the electrophoresis solution, improves the homogeneity between replicate samples in the 96-minigel format. The high-throughput method described in this paper should greatly increase the overall capacity, versatility and robustness of the comet assay.


Environmental Health Perspectives | 2012

Birth Weight, Head Circumference, and Prenatal Exposure to Acrylamide from Maternal Diet: The European Prospective Mother–Child Study (NewGeneris)

Marie Pedersen; Hans von Stedingk; Maria Botsivali; Silvia Agramunt; Jan Alexander; Gunnar Brunborg; Leda Chatzi; Sarah Fleming; Eleni Fthenou; Berit Granum; Kristine B. Gutzkow; Laura J. Hardie; Lisbeth E. Knudsen; Soterios A. Kyrtopoulos; Michelle A. Mendez; Domenico Franco Merlo; Jeanette K.S. Nielsen; Per Rydberg; Dan Segerbäck; Jordi Sunyer; John Wright; Margareta Törnqvist; Jos Kleinjans; Manolis Kogevinas

Background: Acrylamide is a common dietary exposure that crosses the human placenta. It is classified as a probable human carcinogen, and developmental toxicity has been observed in rodents. Objectives: We examined the associations between prenatal exposure to acrylamide and birth outcomes in a prospective European mother–child study. Methods: Hemoglobin (Hb) adducts of acrylamide and its metabolite glycidamide were measured in cord blood (reflecting cumulated exposure in the last months of pregnancy) from 1,101 singleton pregnant women recruited in Denmark, England, Greece, Norway, and Spain during 2006–2010. Maternal diet was estimated through food-frequency questionnaires. Results: Both acrylamide and glycidamide Hb adducts were associated with a statistically significant reduction in birth weight and head circumference. The estimated difference in birth weight for infants in the highest versus lowest quartile of acrylamide Hb adduct levels after adjusting for gestational age and country was –132 g (95% CI: –207, –56); the corresponding difference for head circumference was –0.33 cm (95% CI: –0.61, –0.06). Findings were similar in infants of nonsmokers, were consistent across countries, and remained after adjustment for factors associated with reduced birth weight. Maternal consumption of foods rich in acrylamide, such as fried potatoes, was associated with cord blood acrylamide adduct levels and with reduced birth weight. Conclusions: Dietary exposure to acrylamide was associated with reduced birth weight and head circumference. Consumption of specific foods during pregnancy was associated with higher acrylamide exposure in utero. If confirmed, these findings suggest that dietary intake of acrylamide should be reduced among pregnant women.


Environmental Health Perspectives | 2012

Dietary Acrylamide Intake during Pregnancy and Fetal Growth—Results from the Norwegian Mother and Child Cohort Study (MoBa)

Talita Duarte-Salles; Hans von Stedingk; Berit Granum; Kristine B. Gutzkow; Per Rydberg; Margareta Törnqvist; Michelle A. Mendez; Gunnar Brunborg; Anne Lise Brantsæter; Helle Margrete Meltzer; Jan Alexander; Margaretha Haugen

Background: Acrylamide has shown developmental and reproductive toxicity in animals, as well as neurotoxic effects in humans with occupational exposures. Because it is widespread in food and can pass through the human placenta, concerns have been raised about potential developmental effects of dietary exposures in humans. Objectives: We assessed associations of prenatal exposure to dietary acrylamide with small for gestational age (SGA) and birth weight. Methods: This study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Acrylamide exposure assessment was based on intake estimates obtained from a food frequency questionnaire (FFQ), which were compared with hemoglobin (Hb) adduct measurements reflecting acrylamide exposure in a subset of samples (n = 79). Data on infant birth weight and gestational age were obtained from the Medical Birth Registry of Norway. Multivariable regression was used to estimate associations between prenatal acrylamide and birth outcomes. Results: Acrylamide intake during pregnancy was negatively associated with fetal growth. When women in the highest quartile of acrylamide intake were compared with women in the lowest quartile, the multivariable-adjusted odds ratio (OR) for SGA was 1.11 (95% CI: 1.02, 1.21) and the coefficient for birth weight was –25.7 g (95% CI: –35.9, –15.4). Results were similar after excluding mothers who smoked during pregnancy. Maternal acrylamide– and glycidamide–Hb adduct levels were correlated with estimated dietary acrylamide intakes (Spearman correlations = 0.24; 95% CI: 0.02, 0.44; and 0.48; 95% CI: 0.29, 0.63, respectively). Conclusions: Lowering dietary acrylamide intake during pregnancy may improve fetal growth.

Collaboration


Dive into the Kristine B. Gutzkow's collaboration.

Top Co-Authors

Avatar

Gunnar Brunborg

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Leda Chatzi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wright

Bradford Royal Infirmary

View shared research outputs
Top Co-Authors

Avatar

Helle Margrete Meltzer

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Pedersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jordi Sunyer

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Mendez

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Domenico Franco Merlo

National Cancer Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge