Kristine C. Olson
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristine C. Olson.
American Journal of Physiology-endocrinology and Metabolism | 2013
Denise E. Lackey; Christopher J. Lynch; Kristine C. Olson; Rouzbeh Mostaedi; Mohamed R. Ali; William Smith; Fredrik Karpe; Sandy M. Humphreys; Daniel Bedinger; Tamara N. Dunn; Anthony P. Thomas; Pieter J. Oort; Dorothy A. Kieffer; Rajesh Amin; Ahmed Bettaieb; Fawaz G. Haj; Paska A. Permana; Tracy G. Anthony; Sean H. Adams
Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.
Circulation | 2016
Haipeng Sun; Kristine C. Olson; Chen Gao; Domenick A. Prosdocimo; Meiyi Zhou; Zhihua Wang; Darwin Jeyaraj; Ji Youn Youn; Shuxun Ren; Yunxia Liu; Christoph Rau; Svati H. Shah; Olga Ilkayeva; Wen Jun Gui; Noelle S. William; R. Max Wynn; Christopher B. Newgard; Hua Cai; Xinshu Xiao; David T. Chuang; Paul Christian Schulze; Christopher J. Lynch; Mukesh K. Jain; Yibin Wang
Background— Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. Methods and Results— Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain &agr;-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain &agr;-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain &agr;-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload. Conclusions— BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15–mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.
PLOS ONE | 2013
Pengxiang She; Kristine C. Olson; Yoshihiro Kadota; Ayami Inukai; Yoshiharu Shimomura; Charles L. Hoppel; Sean H. Adams; Yasuko Kawamata; Hideki Matsumoto; Ryosei Sakai; Charles H. Lang; Christopher J. Lynch
Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein turnover along with impaired BCKDC activity. Elevated BCAAs/BCKAs may contribute to observed elevations in protein synthesis and BCAA oxidation.
Drug Metabolism and Disposition | 2009
Kristine C. Olson; Ryan W. Dellinger; Qing Zhong; Dongxiao Sun; Shantu Amin; Thomas E. Spratt; Philip Lazarus
The UDP-glucuronosyltransferase (UGT) 1A9 has been shown to play an important role in the detoxification of several carcinogens and clearance of anticancer and pain medications. The goal of the present study was to identify novel polymorphisms in UGT1A9 and characterize their effect on glucuronidation activity. The UGT1A9 gene was analyzed by direct sequencing of buccal cell genomic DNA from 90 healthy subjects. In addition to a previously identified single nucleotide polymorphism (SNP) at codon 33 resulting in an amino acid substitution (Met>Thr), two low-prevalence (<0.02) novel missense SNPs at codons 167 (Val>Ala) and 183 (Cys>Gly) were identified and are present in both white and African-American subjects. Glucuronidation activity assays using HEK293 cell lines overexpressing wild-type or variant UGT1A9 demonstrated that the UGT1A933Thr and UGT1A9183Gly variants exhibited differential glucuronidation activities compared with wild-type UGT1A9, but this was substrate-dependent. The UGT1A9167Ala variant exhibited levels of activity similar to those of wild-type UGT1A9 for all substrates tested. Whereas the wild-type and UGT1A933Thr and UGT1A9167Ala variants formed homodimers as determined by Western blot analysis of native polyacrylamide gels, the UGT1A9183Gly variant was incapable of homodimerization. These results suggest that several low-prevalence missense polymorphisms exist for UGT1A9 and that two of these (M33T and C183G) are functional. These results also suggest that although Cys183 is necessary for UGT1A9 homodimerization, the lack of capacity for UGT1A9 homodimerization is not sufficient to eliminate UGT1A9 activity.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Emily E. Blythe; Kristine C. Olson; Vincent Chau; Raymond J. Deshaies
Significance The ATPase p97 plays an important cellular role by extracting proteins modified with ubiquitin (Ub) from membranes, chromatin, or protein complexes. However, the unstable and complicated nature of p97 substrates has hindered a detailed study of mechanism. To overcome these issues, we developed Ub-GFP as a fluorescent reporter of p97 activity. When Ub-GFP is conjugated with ubiquitin chains, p97 and its cofactor NPLOC4-UFD1L unfold it in an ATP-dependent manner, explicitly demonstrating that p97 is an unfoldase. We also show that a p97 mutation associated with multisystem proteinopathy has enhanced unfoldase activity, which suggests a novel approach to disease therapy. Our method opens the door for future studies of p97 mechanism that were until now not feasible. p97 is a “segregase” that plays a key role in numerous ubiquitin (Ub)-dependent pathways such as ER-associated degradation. It has been hypothesized that p97 extracts proteins from membranes or macromolecular complexes to enable their proteasomal degradation; however, the complex nature of p97 substrates has made it difficult to directly observe the fundamental basis for this activity. To address this issue, we developed a soluble p97 substrate—Ub-GFP modified with K48-linked ubiquitin chains—for in vitro p97 activity assays. We demonstrate that WT p97 can unfold proteins and that this activity is dependent on the p97 adaptor NPLOC4-UFD1L, ATP hydrolysis, and substrate ubiquitination, with branched chains providing maximal stimulation. Furthermore, we show that a p97 mutant that causes inclusion body myopathy, Paget’s disease of bone, and frontotemporal dementia in humans unfolds substrate faster, suggesting that excess activity may underlie pathogenesis. This work overcomes a significant barrier in the study of p97 and will allow the future dissection of p97 mechanism at a level of detail previously unattainable.
Molecular Genetics and Metabolism | 2013
Heather A. Zimmerman; Kristine C. Olson; Gang Chen; Christopher J. Lynch
Liver transplantation appears to be quite beneficial for treatment of maple syrup urine disease (MSUD, an inherited disorder of branched chain amino acid metabolism); however, there is a limited availability of donor livers worldwide and the first year costs of liver transplants are quite high. Recent studies have suggested that intact adipose tissue, already widely used in reconstructive surgery, may have an underappreciated high capacity for branched chain amino acid (BCAA) metabolism. Here we examined the potential for adipose tissue transplant to lower circulating BCAAs in two models of defective BCAA metabolism, BCATm and PP2Cm [branched chain keto acid dehydrogenase complex (BCKDC) phosphatase] knockout (KO) mice. After 1-2g fat transplant, BCATm and PP2Cm KO mice gained or maintained body weight 3weeks after surgery and consumed similar or more food/BCAAs the week before phlebotomy. Transplant of fat into the abdominal cavity led to a sterile inflammatory response and nonviable transplanted tissue. However when 1-2g of fat was transplanted subcutaneously into the back, either as small (0.1-0.3g) or finely minced pieces introduced with an 18-ga. needle, plasma BCAAs decreased compared to Sham operated mice. In two studies on BCATm KO mice and one study on PP2Cm KO mice, fat transplant led to 52-81% reductions in plasma BCAAs compared to baseline plasma BCAA concentrations of untreated WT type siblings. In PP2Cm KO mice, individual BCAAs in plasma were also significantly reduced by fat transplant, as were the alloisoleucine/Phe ratios. Therefore, subcutaneous fat transplantation may have merit as an adjunct to dietary treatment of MSUD. Additional studies are needed to further refine this approach.
Analytical Biochemistry | 2013
Kristine C. Olson; Gang Chen; Christopher J. Lynch
Branched-chain keto acids (BCKAs) are associated with increased susceptibility to several degenerative diseases. However, BCKA concentrations in tissues or the amounts of tissue available are frequently at the limit of detection for standard plasma methods. To accurately and quickly determine tissue BCKAs, we have developed a sensitive ultra fast liquid chromatography-mass spectrometry (UFLC-MS) method. BCKAs from deproteinized tissue extractions were o-phenylenediamine (OPD) derivatized, ethyl acetate extracted, lyophilized in a vacuum centrifuge, and reconstituted in 200 mM ammonium acetate. Samples were injected onto a Shimadzu UFLC system coupled to an AB-Sciex 5600 Triple TOF mass spectrometer instrument that detected masses of the OPD BCKA products using a multiple reaction monitoring method. An OPD-derivatized (13)C-labeled keto acid was used as an internal standard. Application of the method for C57BL/6J (wild-type) and PP2Cm knockout mouse tissues, including kidney, adipose tissue, liver, gastrocnemius, and hypothalamus, is shown. The lowest tissue concentration measured by this method was 20 nM, with the standard curve covering a wide range (7.8-32,000 nM). Liquid chromatography-mass spectrometry run times for this assay were less than 5 min, facilitating high throughput, and the OPD derivatives were found to be stable over several days.
Obesity | 2014
Kristine C. Olson; Gang Chen; Yuping Xu; Andras Hajnal; Christopher J. Lynch
Circulating branched‐chain amino acids (BCAAs) are elevated in obesity and this has been linked to obesity comorbidities. However it is unclear how obesity affects alloisoleucine, a BCAA and pathognomonic marker of branched‐chain keto acid dehydrogenase complex (BCKDC) disorders. It has been previously established that obese Zucker rats exhibit BCKDC impairments in fat and other tissues, whereas BCKDC impairments in adipose tissue of DIO rats are compensated by increased hepatic BCKDC activity. Therefore, alloisoleucine was investigated in these two obesity models.
PLOS ONE | 2018
Paige M. Kulling; Kristine C. Olson; Cait E. Hamele; Mariella F. Toro; Su-Fern Tan; David J. Feith; Thomas P. Loughran
T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exhibit elevated serum levels of the STAT1 activator, interferon-γ (IFN-γ), thus contributing to an inflammatory environment. In normal cells, IFN-γ production is tightly controlled through induction of IFN-γ negative regulators. However, in T-LGLL, IFN-γ signaling lacks this negative feedback mechanism as evidenced by excessive IFN-γ production and decreased levels of suppressors of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ. Here we characterize the IFN-γ-STAT1 pathway in TL-1 cells, a cell line model of T-LGLL. TL-1 cells exhibited lower IFN-γ receptor protein and mRNA expression compared to an IFN-γ responsive cell line. Furthermore, IFN-γ treatment did not induce JAK2 or STAT1 activation or transcription of IFN-γ-inducible gene targets. However, IFN-β induced p-STAT1 and subsequent STAT1 gene transcription, demonstrating a specific IFN-γ signaling defect in TL-1 cells. We utilized siRNA targeting of STAT1, STAT3, and STAT5b to probe their role in IL-2-mediated IFN-γ regulation. These studies identified STAT5b as a positive regulator of IFN-γ production. We also characterized the relationship between STAT1, STAT3, and STAT5b proteins. Surprisingly, p-STAT1 was positively correlated with STAT3 levels while STAT5b suppressed the activation of both STAT1 and STAT3. Taken together, these results suggest that the dysregulation of the IFN-γ-STAT1 signaling pathway in TL-1 cells likely results from low levels of the IFN-γ receptor. The resulting inability to induce negative feedback regulators explains the observed elevated IL-2 driven IFN-γ production. Future work will elucidate the best way to target this pathway, with the ultimate goal to find a better therapeutic for T-LGLL.
Obesity | 2014
Kristine C. Olson; Gang Chen; Yuping Xu; Andras Hajnal; Christopher J. Lynch
Circulating branched‐chain amino acids (BCAAs) are elevated in obesity and this has been linked to obesity comorbidities. However it is unclear how obesity affects alloisoleucine, a BCAA and pathognomonic marker of branched‐chain keto acid dehydrogenase complex (BCKDC) disorders. It has been previously established that obese Zucker rats exhibit BCKDC impairments in fat and other tissues, whereas BCKDC impairments in adipose tissue of DIO rats are compensated by increased hepatic BCKDC activity. Therefore, alloisoleucine was investigated in these two obesity models.