Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristine J. Hare is active.

Publication


Featured researches published by Kristine J. Hare.


Regulatory Peptides | 2005

GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors

Cathrine Ørskov; Bolette Hartmann; Steen Seier Poulsen; Jesper Thulesen; Kristine J. Hare; Jens J. Holst

BACKGROUND Glucagon-like peptide-2 is thought to act as a growth factor for the gut, but the localization of the GLP-2 receptor and mechanism of action on epithelial growth is unclear. METHODS AND RESULTS We found glucagon-like peptide-2 (GLP-2) receptors mainly on subepithelial myofibroblasts in rat, mouse, marmoset and human small and large intestine by immunohistochemistry and in situ hybridisation. By double labelling we found that these GLP-2 receptor immunoreactive cells also produce smooth muscle actin and keratinocyte growth factor (KGF). By subcutaneous infusion of either GLP-2 alone, GLP-2 plus KGF antibody, KGF antibody alone or saline in mice, we found that KGF antibody abolished the growth promoting effect of GLP-2 in the large intestine, but not in the small intestine. CONCLUSIONS Our findings suggest that GLP-2 in the gut acts by activating receptors on the subepithelial myofibroblasts, causing the release of growth factors, which in turn stimulate intestinal growth.


Diabetes | 2010

The Glucagonostatic and Insulinotropic Effects of Glucagon-Like Peptide 1 Contribute Equally to Its Glucose-Lowering Action

Kristine J. Hare; Tina Vilsbøll; Meena Asmar; Carolyn F. Deacon; Filip K. Knop; Jens J. Holst

OBJECTIVE Glucagon-like peptide 1 (GLP-1) exerts beneficial antidiabetic actions via effects on pancreatic β- and α-cells. Previous studies have focused on the improvements in β-cell function, while the inhibition of α-cell secretion has received less attention. The aim of this research was to quantify the glucagonostatic contribution to the glucose-lowering effect of GLP-1 infusions in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Ten male patients with well-regulated type 2 diabetes (A1C 6.9 ± 0.8%, age 56 ± 10 years, BMI 31 ± 3 kg/m2 [means ± SD]) were subjected to five 120-min glucose clamps at fasting plasma glucose (FPG) levels. On day 1, GLP-1 was infused to stimulate endogenous insulin release and suppress endogenous glucagon. On days 2–5, pancreatic endocrine clamps were performed using somatostatin infusions of somatostatin and/or selective replacement of insulin and glucagon; day 2, GLP-1 plus basal insulin and glucagon (no glucagon suppression or insulin stimulation); day 3, basal insulin only (glucagon deficiency); day 4, basal glucagon and stimulated insulin; and day 5, stimulated insulin. The basal plasma glucagon levels were chosen to simulate portal glucagon levels. RESULTS Peptide infusions produced the desired hormone levels. The amount of glucose required to clamp FPG was 24.5 ± 4.1 (day 1), 0.3 ± 0.2 (day 2), 10.6 ± 1.1 (day 3), 11.5 ± 2.7 (day 4), and 24.5 ± 2.6 g (day 5) (day 2 was lower than days 3 and 4, which were both similar and lower than days 1 and 5). CONCLUSIONS We concluded that insulin stimulation (day 4) and glucagon inhibition (day 3) contribute equally to the effect of GLP-1 on glucose turnover in patients with type 2 diabetes, and these changes explain the glucose-lowering effect of GLP-1 (day 5 vs. day 1).


Gut | 2004

Glucagon-like peptide 2 (GLP-2) accelerates the growth of colonic neoplasms in mice

Jesper Thulesen; B. Hartmann; Kristine J. Hare; Hannelouise Kissow; C. Ørskov; Jens J. Holst; S. S. Poulsen

Background: Glucagon-like peptide 2 (GLP-2) is an intestinotrophic mediator with therapeutic potential in conditions with compromised intestinal capacity. However, growth stimulation of the intestinal system may accelerate the growth of existing neoplasms in the intestine. Aims: In the present study, the effects of GLP-2 treatment on the growth of chemically induced colonic neoplasms were investigated. Methods: In 210 female C57bl mice, colonic tumours were initially induced with the methylating carcinogen 1,2-dimethylhydrazine (DMH) and mice were then treated with GLP-2. Two months after discontinuation of the carcinogen treatment, 135 of the mice were allocated to one of six groups which were treated twice daily with 25 μg GLP-2, 25 μg Gly2-GLP-2 (stable analogue), or phosphate buffered saline for a short (10 days) or long (one month) period. The remaining 75 mice had a treatment free period of three months and were then allocated to groups subjected to long term treatment, as above. Results: Colonic polyps developed in 100% of the mice, regardless of treatment. Survival data revealed no statistical significant differences among the different groups but histopathological analysis demonstrated a clear and significant increase in tumour load of mice treated with Gly2-GLP-2. The tumour promoting effect of native GLP-2 was less pronounced but the number of small sized polyps increased following long term treatment. Conclusions: The present results clearly indicate that GLP-2 promotes the growth of mucosal neoplasms. Our findings highlight the need for future investigations on the effects of GLP-2 in conditions needing long time treatment or with increased gastrointestinal cancer susceptibility.


The Journal of Clinical Endocrinology and Metabolism | 2009

Preserved Inhibitory Potency of GLP-1 on Glucagon Secretion in Type 2 Diabetes Mellitus

Kristine J. Hare; Filip K. Knop; Meena Asmar; Sten Madsbad; Carolyn F. Deacon; Jens J. Holst; Tina Vilsbøll

OBJECTIVE Glucagon-like peptide-1 (GLP-1) is insulinotropic, but its effect on the alpha-cell is less clear. We investigated the dose-response relationship for GLP-1-induced glucagon suppression in patients with type 2 diabetes (T2DM) and healthy controls. DESIGN Ten patients with T2DM (duration of DM, 4 +/- 1 yr; glycosylated hemoglobin, 7.1 +/- 0.3%) were studied on 2 d, with stepwise increasing GLP-1 infusions (0.25, 0.5, 1.0, and 2.0 pmol x kg(-1) x min(-1)) (d 1) or saline (d 2) with plasma glucose (PG) clamped at fasting level. On d 3, patient PG was normalized overnight using a variable insulin infusion, followed by a 3-h GLP-1 infusion as on d 1. Ten healthy subjects were examined with the same protocol on d 1 and 2. RESULTS We observed similar dose-dependent stepwise suppression of glucagon secretion in both patients and controls. Significant suppression was observed at a GLP-1 infusion rate of 0.25 pmol x kg(-1) x min(-1) (resulting in physiological plasma concentrations) as early as time 15 min in healthy controls and time 30 min in patients (d 1 and d 3). AUC for glucagon was significantly reduced on d 1 and 3 (1096 +/- 109 and 1116 +/- 108 3h x pmol/liter; P = NS) as compared to d 2 (1733 +/- 193 3h x pmol/liter; P < 0.01) in patients with T2DM. A similar reduction in AUC for glucagon was observed in healthy controls [1122 +/- 186 (d 1) vs. 1733 +/- 312 3h x pmol/liter (d 2); P < 0.001]. CONCLUSIONS The diabetic alpha-cell appears to be highly sensitive to the inhibitory action of GLP-1 both during high and near-normalized PG levels, but responds with a short, nevertheless significant delay.


Regulatory Peptides | 2002

Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats.

Bolette Hartmann; Jesper Thulesen; Kristine J. Hare; Hannelouise Kissow; Cathrine Ørskov; Steen Seier Poulsen; Jens J. Holst

Supraphysiological doses of glucagon-like peptide-2 (GLP-2) have been shown to induce intestinal growth by increasing villus height and crypt depth and by decreasing apoptosis, but a physiological effect of GLP-2 has not yet been demonstrated. Earlier, we found elevated levels of endogenous GLP-2 in untreated streptozotocin diabetic rats associated with marked intestinal growth. In the present study, we investigated the role of endogenous GLP-2 for this adaptive response. We included four groups of six rats: (1) diabetic rats treated with saline, (2) diabetic rats treated with non-specific antibodies, (3) diabetic rats treated with polyclonal GLP-2 antibodies and (4) non-diabetic control rats treated with saline. All animals were treated with once daily intraperitoneal injections for 13 days and killed on day 14. Diabetic rats treated with saline or non-specific antibodies had a significantly (P<0.01) increased area of mucosa (13.00+/-0.64 and 13.37+/-0.60 mm(2), respectively) in the proximal part of the small intestine compared with non-diabetic controls (7.97+/-0.70 mm(2)). In contrast, diabetic rats treated with GLP-2 antibodies had a significantly (P<0.01) smaller increase in area of mucosa in the proximal part of the small intestine (10.84+/-0.44 mm(2)). Antibody treatment had no effect on body weight, blood glucose concentrations and food intake. Thus, blocking of endogenous GLP-2 in a model of adaptive intestinal growth reduces the growth response, providing strong evidence for a physiological growth factor function of GLP-2.


Regulatory Peptides | 2012

Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice.

Hannelouise Kissow; Bolette Hartmann; Jens J. Holst; Niels-Erik Viby; Lærke Schmidt Hansen; Mette M. Rosenkilde; Kristine J. Hare; Steen Seier Poulsen

INTRODUCTION Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are secreted in parallel from the intestinal endocrine cells after nutrient intake. GLP-1 is an incretin hormone and analogues are available for the treatment of type 2 diabetes mellitus (T2DM). GLP-2 is an intestinal growth hormone and is shown to promote growth of colonic adenomas in carcinogen treated mice. Both peptides are degraded by dipeptidyl peptidase-4 (DPP-4) into inactive metabolites. DPP-4 inhibitors are therefore also in use for treatment of T2DM. It is possible that DPP-4 inhibition by enhancing the exposure of endogenous GLP-2 to the intestinal epithelia also might mediate growth and promote neoplasia. We investigated the intestinal growth effect of the GLP-1 receptor agonists (GLP-1 RAs) (liraglutide and exenatide) and DPP-4 inhibition (sitagliptin) in healthy mice. We also investigated the potential tumour promoting effect of liraglutide and sitaglitin in the colon of carcinogen treated mice. We used GLP-2 as a positive control. METHODS For the growth study we treated healthy CD1 mice with liraglutide (300 μg×2), exenatide (12.5 μg×2) or vehicle subcutaneously and sitagliptin (8mg×2) or water by oral gavage for 10 or 30 days. We measured intestinal weight, cross sectional area, villus height and crypt depth. For the tumour study we treated carcinogen treated mice (1,2 dimethylhydrazine 21 mg/kg/week for 12 weeks) with liraglutide (300 μg×2), Gly2-GLP-2 (25 μg×2) or vehicle subcutaneously and sitagliptin (8 mg×2) or water by oral gavage for 45 days. We counted aberrant crypt foci (ACF), mucin depleted foci (MDF) and adenomas in the colon. Using COS-7 cells transfected with a GLP-2 receptor, we tested if liraglutide or exenatide could activate the receptor. RESULTS In the 10 days experiment the relative small intestinal weight was increased with 56% in the liraglutide group (p<0.001) and 26% in the exenatide group (p<01) compared with vehicle treated mice. After 30 days of treatment, liraglutide did also increase the colonic weight (p<0.01). By morphometry the growth pattern mimicked that of GLP-2. Sitagliptin treatment had only a minor effect. In the carcinogen treated mice we found no increase of ACF in any of the groups, the numbers of MDF and adenomas after liraglutide and sitagliptin treatments were similar to their respective control groups. Neither liraglutide nor exenatide stimulated cAMP release from GLP-2 receptor transfected cells. CONCLUSION Both GLP-1 analogues were potent growth stimulators of the healthy mouse intestine. No agonism was found for GLP-1 RAs at the GLP-2 receptor. Despite of the growth effect, liraglutide did not promote dysplasia in the colon. Sitagliptin did not show any tumour promoting effects, and non considerable growth effects.


American Journal of Physiology-endocrinology and Metabolism | 2010

Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes

Kristine J. Hare; Tina Vilsbøll; Jens J. Holst; Filip K. Knop

Hyperglucagonemia following oral glucose ingestion in patients with type 1 diabetes (and type 2 diabetes) has been claimed to result from impaired intraislet insulin inhibition of glucagon. We looked at plasma glucagon responses to the oral glucose tolerance test (OGTT) and isoglycemic intravenous glucose infusion (IIGI) in patients with type 1 diabetes. Nine patients without residual beta-cell function [age: 25 +/- 9 yr; body mass index (BMI): 24 +/- 2 kg/m(2); fasting plasma glucose (FPG): 9.5 +/- 2.1 mM; Hb A(1c): 8.4 +/- 1.2% (mean +/- SD)] and eight healthy subjects (age: 28 +/- 5 yr; BMI: 24 +/- 3 kg/m(2); FPG: 5.3 +/- 0.2 mM; Hb A(1c): 5.0 +/- 0.1%) were examined on two separate occasions: 4-h 50-g OGTT and IIGI. Isoglycemia during IIGIs was obtained using 53 +/- 5 g of glucose in patients with type 1 diabetes and 30 +/- 3 g in control subjects (P < 0.001), resulting in gastrointestinal-mediated glucose disposal [100% x (glucose(OGTT) - glucose(IIGI)/glucose(OGTT))] of -6 +/- 9 and 40 +/- 6% (P < 0.01), respectively. Equal glucagon suppression during the two glucose stimuli was observed in healthy subjects, whereas patients with type 1 diabetes exhibited less inhibition in response to OGTT compared with IIGI (AUC: 1,519 +/- 129 vs. 1,240 +/- 86 pM.4 h; P = 0.03). This difference was even more pronounced during the initial 40 min with paradoxical hypersecretion of glucagon during OGTT and suppression during IIGI (AUC: 37 +/- 13 vs. -33 +/- 16 pM.40 min; P = 0.02). These results suggest that the inappropriate glucagon response to glucose in patients with type 1 diabetes occurs as a consequence of the oral administration way, suggesting a role of the gastrointestinal tract, possibly via glucagonotropic signaling from gut hormones (e.g., glucose-dependent insulinotropic polypeptide), in type 1 diabetic hyperglucagonemia.


European Journal of Gastroenterology & Hepatology | 2005

Tissue levels and post-prandial secretion of the intestinal growth factor, glucagon-like peptide-2, in controls and inflammatory bowel disease: comparison with peptide YY.

Peter T. Schmidt; Tryggve Ljung; Bolette Hartmann; Kristine J. Hare; Jens J. Holst; Per M. Hellström

Background and aim Glucagon-like peptide-2 (GLP-2) and peptide YY (PYY) are produced in endocrine L-cells of the intestine and secreted in response to food intake. GLP-2 has a trophic effect on the intestinal epithelium, whereas PYY has pro-absorptive effects. It can be speculated that, in inflammatory bowel disease (IBD), the production and secretion of GLP-2 and PYY could be affected as a part of a regulatory mechanism. Therefore, tissue levels and meal-stimulated secretion of GLP-2 and PYY were studied in IBD patients and compared to controls. Methods Outpatients with IBD and control patients were included. Mucosal biopsies were taken from the ileum and colon and the content of GLP-2 and PYY was measured. After colonoscopy the patients took a mixed meal and plasma was collected for 90 min for plasma measurements of GLP-2 and PYY. Results Tissue levels of GLP-2 in control patients were highest in the terminal ileum (407±82 pmol/g tissue, n=10), whereas PYY was highest in the rectum (919±249 pmol/g tissue, n=10). In IBD patients with acute inflammation, the content of GLP-2 was similar to controls, whereas PYY was decreased to 72.1±17.7% (P=0.03, n=13) of control values. Neither the fasting plasma levels nor the meal responses of GLP-2 and PYY differed between controls and IBD patients. Conclusion The similar responses of GLP-2 and PYY in patients and controls do not support the suggestion that L-cell secretion is altered in IBD. The decreased tissue PYY concentrations may contribute to the diarrhoea of some of these patients.


American Journal of Physiology-endocrinology and Metabolism | 2010

On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans

Meena Asmar; Winnie Tangaa; Sten Madsbad; Kristine J. Hare; Arne Astrup; Anne Flint; Jens Bülow; Jens J. Holst

We investigated the role of glucose-dependent insulintropic polypeptide (GIP) in the regulation of gastric emptying (GE), appetite, energy intake (EI), energy expenditure (EE), plasma levels of triglycerides (TAG), and free fatty acids (FFA) in humans. First, 20 healthy males received intravenous infusion of GIP (0.8 pmol.kg(-1).min(-1)) or saline for 300 min during and after a fixed meal (protocol 1). GE was measured using paracetamol, appetite sensations using visual analog scales, EE using indirect calorimetry, and EI during a subsequent ad libitum meal (at 300 min). Next, 10 healthy males received intravenous infusions of Intralipid, glucose, or Intralipid plus glucose, with and without GIP (1.5 pmol.kg(-1).min(-1)) for 300 min (protocol 2). In protocol 1, GIP did not have any effect on GE, EI, EE, removal of TAG, or FFA and did not influence the subjective feeling of hunger, satiety, fullness or prospective food consumption compared with saline. In protocol 2, no difference was seen in the plasma TAG on Intralipid + GIP/saline and Intralipid + glucose + GIP/saline days. FFA concentrations were lower on Intralipid + glucose + GIP/saline days (P < 0.05) compared with Intralipid + GIP/saline days and on Intralipid + GIP day (P < 0.004) compared with Intralipid + saline day. Insulin increased on all GIP days compared with saline days (P < 0.05). In conclusion, while confirming its insulinotropic effects, these data suggest that GIP does not affect GE, appetite, energy intake, EE, or the clearance rate of the applied TAG formulation in humans. However, both insulin and GIP lower post-Intralipid FFA concentration, GIP probably via stimulation of insulin secretion, increasing FFA reesterification.


Clinical Cancer Research | 2007

The intestinotrophic peptide, glp-2, counteracts intestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, gefitinib.

Kristine J. Hare; Bolette Hartmann; Hannelouise Kissow; Jens J. Holst; Steen Seier Poulsen

Purpose: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been introduced as antitumor agents in the treatment of cancers overexpressing the receptor. The treatment has gastrointestinal side effects which may decrease patient compliance and limit the efficacy. Glucagon-like peptide-2 (GLP-2) is an intestinal hormone with potent intestinotrophic properties and therapeutic potential in disorders with compromised intestinal capacity. The growth stimulation is highly specific to the gastrointestinal tract, and no effects are observed elsewhere. The aim of this study was to examine whether the inhibition of the EGFR induces intestinal atrophy and if this can be counteracted by treatment with GLP-2. Experimental Design: Mice were treated for 10 days with either gefitinib orally, GLP-2 as injections, or a combination of both. After sacrifice, the weight and length of the segments of the gastrointestinal tract were determined, and histologic sections were analyzed by morphometric methods. Results: A significant atrophy of the small-intestinal wall was observed after treatment with gefitinib because both intestinal weight and morphometrically estimated villus height and cross-sectional area were decreased. The same parameters were increased by GLP-2 treatment alone, and when GLP-2 was combined with the gefitinib treatment, the parameters remained unchanged. Conclusions: Treatment with an EGFR tyrosine kinase inhibitor in mice results in small-intestinal growth inhibition that can be completely prevented by simultaneous treatment with GLP-2. This suggests that the gastrointestinal side effects elicited by treatment with EGFR tyrosine kinase inhibitors can be circumvented by GLP-2 treatment.

Collaboration


Dive into the Kristine J. Hare's collaboration.

Top Co-Authors

Avatar

Jens J. Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filip K. Knop

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Vilsbøll

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meena Asmar

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge