Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristine Krug is active.

Publication


Featured researches published by Kristine Krug.


European Journal of Neuroscience | 1998

Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret

Gary E. Baker; Ian D. Thompson; Kristine Krug; Darragh Smyth; David J. Tolhurst

We have examined the spatial‐frequency selectivity of neurons in areas 17 and 18 of the adult pigmented ferret, by measuring how the amplitude of response depends on the spatial‐frequency of moving sinusoidal gratings of optimal orientation and fixed contrast. Neurons in area 17 of the ferret respond optimally to low spatial frequencies [average 0.25 cycles per degree (c/deg)], much lower than the optima for cat area 17. The tuning curves are of the same form as those found in cat and monkey: unimodal with bandwidths in the range 0.8–3.5 octaves. Neurons in area 18 of the ferret respond optimally to even lower spatial frequencies (average 0.087 c/deg) than area 17 neurons, and the distributions of optimal spatial frequency for areas 17 and 18 hardly overlap. In both cortical areas, the bandwidth of the tuning curves is inversely correlated with optimal spatial frequency. This marked difference in tuning between the two cortical areas is probably attributable to differential geniculo‐cortical projections. Small injections of fluorescent latex microspheres or horseradish peroxidase (HRP) were made into area 17 or area 18 in order to investigate the populations of geniculate neurons projecting to the two cortical areas. After injections into area 17, labelled neurons are found predominantly in the geniculate A layers, with a few neurons labelled in the C layers. Conversely, after an area 18 injection, similar numbers of labelled neurons are found in the C layers as in the A layers. Soma‐size analysis of the neurons in the A‐layers suggests the existence of two populations of relay neurons, which project differentially to areas 17 and 18. The different geniculate inputs and the different spatial‐frequency tuning in areas 17 and 18 may imply that the two cortical areas process visual information more in parallel than in series.


Current Opinion in Neurobiology | 2003

Neuronal mechanisms for the perception of ambiguous stimuli.

A J Parker; Kristine Krug

Ambiguous figures that may take on the appearance of two or more distinct forms have fascinated philosophers and psychologists for generations. Recently, several laboratories have studied the neuronal basis of perceptual appearance at the level of single neurons in the cerebral cortex. Experiments that integrate neuronal recording with analyses based on sensory detection theory reveal a remarkable degree of specificity in these neuronal responses. The new challenges are to understand how cognitive processes, such as attention and memory, interact with perception to generate these neuronal signals.


Current Biology | 2013

A Causal Role for V5/MT Neurons Coding Motion-Disparity Conjunctions in Resolving Perceptual Ambiguity

Kristine Krug; Nela Cicmil; A J Parker; Bruce G. Cumming

Summary Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment.


Personality and Social Psychology Bulletin | 2014

Social Influence and Perceptual Decision Making A Diffusion Model Analysis

Markus Germar; Alexander Schlemmer; Kristine Krug; Andreas Voss; Andreas Mojzisch

Classic studies on social influence used simple perceptual decision-making tasks to examine how the opinions of others change individuals’ judgments. Since then, one of the most fundamental questions in social psychology has been whether social influence can alter basic perceptual processes. To address this issue, we used a diffusion model analysis. Diffusion models provide a stochastic approach for separating the cognitive processes underlying speeded binary decisions. Following this approach, our study is the first to disentangle whether social influence on decision making is due to altering the uptake of available sensory information or due to shifting the decision criteria. In two experiments, we found consistent evidence for the idea that social influence alters the uptake of available sensory evidence. By contrast, participants did not adjust their decision criteria.


Cerebral Cortex | 2012

Long-Range Clustered Connections within Extrastriate Visual Area V5/MT of the Rhesus Macaque

Bashir Ahmed; Patricia M. Cordery; Douglas McLelland; Wyeth Bair; Kristine Krug

Visual area V5/MT in the rhesus macaque has a distinct functional organization, where neurons with specific preferences for direction of motion and binocular disparity are co-organized in columns or clusters. Here, we analyze the pattern of intrinsic connectivity within cortical area V5/MT in both parasagittal sections of the intact brain and tangential sections from flatmounted cortex using small injections of the retrograde tracer cholera toxin subunit b. Labeled cells were predominantly found in cortical layers 2, 3, and 6. Going along the cortical layers, labeled cells were concentrated in regularly spaced clusters. The clusters nearest to the injection site were approximately 2 mm from its center. In flatmounted cortex, along the dorsoventral axis of V5/MT, we identified further clusters of labeled cells up to 10 mm from the injection site. Quantitative analysis of parasagittal sections estimated average cluster spacing at 2.2 mm; in cortical flatmounts, spacing was 2.3 mm measured radially from the injection site. The results suggest a regular pattern of intrinsic connectivity within V5/MT, which is consistent with connectivity between sites with a common preference for both direction of motion and binocular depth. The long-range connections can potentially account for the large suppressive surrounds of V5/MT neurons.


Philosophical Transactions of the Royal Society B | 2015

Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

Nela Cicmil; Kristine Krug

Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.


Cognitive, Affective, & Behavioral Neuroscience | 2008

Cells, circuits, and choices: social influences on perceptual decision making.

Andreas Mojzisch; Kristine Krug

Making decisions is an integral part of everyday life. Social psychologists have demonstrated in many studies that humans’ decisions are frequently and strongly influenced by the opinions of others—even in simple perceptual decisions, where, for example, participants have to judge what an image looks like. However, because the effect of other people’s opinions on decision making has remained largely unaddressed by the neuroimaging and neurophysiology literature, we are only beginning to understand how social influence is integrated into the decision-making process. We put forward the thesis that by probing the neurophysiology of social influence with perceptual decisionmaking tasks similar to those used in the seminal work of Asch (1952, 1956), this gap could be remedied. Perceptual paradigms are already widely used to probe neuronal mechanisms of decision making in nonhuman primates. There is also increasing evidence about how nonhuman primates’ behavior is influenced by observing conspecifics. The high spatial and temporal resolution of neurophysiological recordings in awake monkeys could provide insight into where and how social influence modulates decision making, and thus should enable us to develop detailed functional models of the neural mechanisms that support the integration of social influence into the decision-making process.


Cognitive, Affective, & Behavioral Neuroscience | 2008

Conceptual representations in goal-directed decision making.

Nicholas Shea; Kristine Krug; Philippe N. Tobler

Emerging evidence suggests that the long-established distinction between habit-based and goal-directed decision-making mechanisms can also be sustained in humans. Although the habit-based system has been extensively studied in humans, the goal-directed system is less well characterized. This review brings to that task the distinction between conceptual and nonconceptual representational mechanisms. Conceptual representations are structured out of semantic constituents (concepts)—the use of which requires an ability to perform some language-like syntactic processing. Decision making—as investigated by neuroscience and psychology—is normally studied in isolation from questions about concepts as studied in philosophy and cognitive psychology. We ask what role concepts play in the “goal-directed” decision-making system. We argue that one fruitful way of studying this system in humans is to investigate the extent to which it deploys conceptual representations.


eLife | 2015

Reward modulates the effect of visual cortical microstimulation on perceptual decisions

Nela Cicmil; Bruce G. Cumming; A J Parker; Kristine Krug

Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. DOI: http://dx.doi.org/10.7554/eLife.07832.001


NeuroImage | 2014

Delineating extrastriate visual area MT(V5) using cortical myeloarchitecture.

Holly Bridge; Stuart Clare; Kristine Krug

Visual area MT is a model of choice in primate neurophysiological and human imaging research of visual perception, due to its considerable sensitivity to moving stimuli and the strong direction selectivity of its neurons. While the location of MT(V5) in the non-human primate is easily identifiable based on gross anatomy and appears consistent between animals, this is less the case in human subjects. Functional localisation of human MT+ with moving stimuli can identify a group of motion-sensitive regions, but defining MT proper has proved more challenging. In this review we consider approaches to studying the cyto- and myleoarchitecture of this cortical area that may, in the future, allow identification of human MT in vivo based on anatomy.

Collaboration


Dive into the Kristine Krug's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce G. Cumming

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge