Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristine O. Vasquez is active.

Publication


Featured researches published by Kristine O. Vasquez.


PLOS ONE | 2011

Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging.

Kristine O. Vasquez; Chelsea Casavant; Jeffrey D. Peterson

When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time.


Arthritis Research & Therapy | 2010

Optical tomographic imaging discriminates between disease-modifying anti-rheumatic drug (DMARD) and non-DMARD efficacy in collagen antibody-induced arthritis.

Jeffrey D. Peterson; Timothy P. LaBranche; Kristine O. Vasquez; Sylvie Kossodo; Michele Melton; Randall Rader; John T Listello; Mark A Abrams; Thomas P. Misko

IntroductionStandard measurements used to assess murine models of rheumatoid arthritis, notably paw thickness and clinical score, do not align well with certain aspects of disease severity as assessed by histopathology. We tested the hypothesis that non-invasive optical tomographic imaging of molecular biomarkers of inflammation and bone turnover would provide a superior quantitative readout and would discriminate between a disease-modifying anti-rheumatic drug (DMARD) and a non-DMARD treatment.MethodsUsing two protease-activated near-infrared fluorescence imaging agents to detect inflammation-associated cathepsin and matrix metalloprotease activity, and a third agent to detect bone turnover, we quantified fluorescence in paws of mice with collagen antibody-induced arthritis. Fluorescence molecular tomographic (FMT) imaging results, which provided deep tissue detection and quantitative readouts in absolute picomoles of agent fluorescence per paw, were compared with paw swelling, clinical scores, a panel of plasma biomarkers, and histopathology to discriminate between steroid (prednisolone), DMARD (p38 mitogen-activated protein kinase (MAPK) inhibitor) and non-DMARD (celecoxib, cyclooxygenase-2 (COX-2) inhibitor) treatments.ResultsPaw thickness, clinical score, and plasma biomarkers failed to discriminate well between a p38 MAPK inhibitor and a COX-2 inhibitor. In contrast, FMT quantification using near-infrared agents to detect protease activity or bone resorption yielded a clear discrimination between the different classes of therapeutics. FMT results agreed well with inflammation scores, and both imaging and histopathology provided clearer discrimination between treatments as compared with paw swelling, clinical score, and serum biomarker readouts.ConclusionsNon-invasive optical tomographic imaging offers a unique approach to monitoring disease pathogenesis and correlates with histopathology assessment of joint inflammation and bone resorption. The specific use of optical tomography allowed accurate three-dimensional imaging, quantitation in picomoles rather than intensity or relative fluorescence, and, for the first time, showed that non-invasive imaging assessment can predict the pathologists histology inflammation scoring and discriminate DMARD from non-DMARD activity.


The FASEB Journal | 2009

Imaging schistosomes in vivo

Greice Krautz-Peterson; David Ndegwa; Kristine O. Vasquez; Houari Korideck; Jun Zhang; Jeffrey D. Peterson; Patrick J. Skelly

Schistosomes are intravascular, parasitic helminths that cause a chronic, often debilitating disease afflicting over 200 million people in over 70 countries. Here we describe novel imaging methods that, for the first time, permit visualization of live schistosomes within their living hosts. The technology centers on fluorescent agent uptake and activation in the parasites gut, and subsequent detection and signal quantitation using fluorescence molecular tomography (FMT). There is a strong positive correlation between the signal detected and parasite number. Schistosoma mansoni parasites of both sexes recovered from infected experimental animals exhibit vivid fluorescence throughout their intestines. Likewise, the remaining important human schistosome parasites, S. japonicum and S. hematobium, also exhibit gut fluorescence when recovered from infected animals. Imaging has been used to efficiently document the decline in parasite numbers in infected mice treated with the antischistosome drug praziquantel. This technology will provide a unique opportunity both to help rapidly identify much‐ needed, novel antischistosome therapies and to gain direct visual insight into the intravascular lives of the major schistosome parasites of humans.— Krautz‐Peter‐son, G.,Ndegwa, D., Vasquez, K., Korideck, H., Zhang, J., Peterson, J. D., Skelly, P. J. Imaging schistosomes in vivo. FASEBJ. 23, 2673–2680 (2009)


Journal of Neuroinflammation | 2013

Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo

Valerie L Eaton; Kristine O. Vasquez; Gwendolyn E. Goings; Zoe Hunter; Jeffrey D. Peterson; Stephen D. Miller

BackgroundExperimental autoimmune encephalomyelitis (EAE) is an animal model that captures many of the hallmarks of human multiple sclerosis (MS), including blood–brain barrier (BBB) breakdown, inflammation, demyelination and axonal destruction. The standard clinical score measurement of disease severity and progression assesses functional changes in animal mobility; however, it does not offer information regarding the underlying pathophysiology of the disease in real time. The purpose of this study was to apply a novel optical imaging technique that offers the advantage of rapid imaging of relevant biomarkers in live animals.MethodsAdvances in non-invasive fluorescence molecular tomographic (FMT) imaging, in combination with a variety of biological imaging agents, offer a unique, sensitive and quantifiable approach to assessing disease biology in living animals. Using vascular (AngioSense 750EX) and protease-activatable cathepsin B (Cat B 680 FAST) near infrared (NIR) fluorescence imaging agents to detect BBB breakdown and inflammation, respectively, we quantified brain and spinal cord changes in mice with relapsing-remitting PLP139-151-induced EAE and in response to tolerogenic therapy.ResultsFMT imaging and analysis techniques were carefully characterized and non-invasive imaging results corroborated by both ex vivo tissue imaging and comparison to clinical score results and histopathological analysis of CNS tissue. FMT imaging showed clear differences between control and diseased mice, and immune tolerance induction by antigen-coupled PLGA nanoparticles effectively blocked both disease induction and accumulation of imaging agents in the brain and spinal cord.ConclusionsCat B 680 FAST and AngioSense 750EX offered the combination best able to detect disease in both the brain and spinal cord, as well as the downregulation of disease by antigen-specific tolerance. Non-invasive optical tomographic imaging thus offers a unique approach to monitoring neuroinflammatory disease and therapeutic intervention in living mice with EAE.


American Journal of Physiology-renal Physiology | 2012

A fluorogenic near-infrared imaging agent for quantifying plasma and local tissue renin activity in vivo and ex vivo

Jun Zhang; Dorin V. Preda; Kristine O. Vasquez; Jeff Morin; Jeannine Delaney; Bagna Bao; M. David Percival; Daigen Xu; Dan McKay; Michael Klimas; Bohumil Bednar; Cyrille Sur; David Z. Gao; Karen N. Madden; Wael Yared; Milind Rajopadhye; Jeffrey D. Peterson

The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments.


Journal of Pharmacology and Experimental Therapeutics | 2017

Early Detection of Acute Drug-Induced Liver Injury in Mice by Non-invasive NIR Fluorescence Imaging

Kristine O. Vasquez; Jeffrey D. Peterson

Hepatocellular and cholestatic forms of drug-induced liver injury (DILI) are major reasons for late-stage termination of small-molecule drug discovery research projects. Biochemical serum markers are limited in their ability to sensitively and specifically detect both of these common DILI forms in preclinical models, and tissue-specific approaches to assessing this are labor intensive, requiring extensive animal dosing, tissue preparation, and pathology assessment. In vivo fluorescent imaging offers noninvasive detection of biologic changes detected directly in the livers of living animals. Three different near-infrared fluorescent imaging probes, specific for cell death (Annexin-Vivo 750), matrix metalloproteases (MMPSense 750 FAST), and transferrin receptor (Transferrin-Vivo 750) were used to measure the effects of single bolus intraperitoneal doses of four different chemical agents known to induce liver injury. Hepatocellular injury–inducing agents, thioacetamide and acetaminophen, showed optimal injury detection with probe injection at 18–24 hours, the liver cholestasis-inducing drug rifampicin required early probe injection (2 hours), and chlorpromazine, which induces mixed hepatocellular/cholestatic injury, showed injury with both early and late injection. Different patterns of liver responses were seen among these different imaging probes, and no one probe detected injury by all four compounds. By using a cocktail of these three near-infrared fluorescent imaging probes, all labeled with 750-nm fluorophores, each of the four different DILI agents induced comparable tissue injury within the liver region, as assessed by epifluorescence imaging. A strategy of probe cocktail injection in separate cohorts at 2 hours and at 20–24 hours allowed the effective detection of drugs with either early- or late-onset injury.


Cancer Research | 2016

Abstract 4246: Multispectral open-air fluorescence-guided imaging and detection of tumors using a hands-free translational platform with liquid crystal tunable filters (LCTF)

Ali Behrooz; Kristine O. Vasquez; Peter Waterman; Jeff Meganck; Jeffrey D. Peterson; Peter Miller; Joshua Kempner; Wael Yared

Intraoperative identification and resection of tumors currently relies on the ability of the surgeon to visually detect or palpate the tumors and residual malignant tissue. As such, minuscule tumor nodules can go undetected or be inadequately removed, with such cases often resulting in the need for secondary treatment or additional surgical intervention. The Solaris™ platform is an open-air fluorescent imaging instrument designed for large animal fluorescence-guided surgery, with the advantage of real-time acquisition of fluorescence images/video under surgical light conditions. Solaris supports four fixed fluorescent channels ranging from visible to near infrared (NIR), and a multispectral channel where a liquid crystal tunable filter (LCTF) is used to acquire spectral data by sweeping across the green-to-red portion of the visible spectrum. This range of imaging channels allows for single-wavelength and multispectral imaging of widely used reagents (e.g. indocyanine green [ICG] and Fluorescein isothiocyanate [FITC]) and unique NIR fluorescent dyes used for detecting and labeling tumors. While fluorescent imaging using NIR imaging agents (680, 750, 800 nm) offered effective tumor detection, identification of tumors implanted in nude mice or rats using visible (400-650 nm) reagents such as FITC presented challenges considering the presence of auto-fluorescence originating from tissue and food (alfalfa). For these reagents, Solaris acquired multispectral images using the LCTF under ambient light conditions, and an automated spectral unmixing algorithm was applied to the multispectral data, after background correction and ambient light removal, to separate tissue and food auto-fluorescence from the reagent fluorescent signal. The algorithm used vertex component analysis to automatically extract the primary pure spectra present in the multispectral images and unmix the reagent fluorescent signal by non-negative least squares fitting. To test the spectral unmixing capabilities of Solaris, in vivo experiments were performed using small amounts of locally injected FITC in mice and rats. In the absence of unmixing, it was not possible to accurately detect sites of FITC signal, but with unmixing the labeled regions were well defined. Additional studies in tumor-bearing mice and rats substantiated the ability to spectrally unmix FITC agent signal in deep tumor masses imaged under ambient light, enhancing the ability to surgically resect them. To further validate this concept, bioluminescent tumor cell lines were implanted in mice. After image-guided tumor resection, both the residual tumor bed and the resected tumors were imaged to confirm complete removal. These data demonstrate that intraoperative image-guided resection of fluorescent-labeled tumors can be achieved using LCTF-based open-air multispectral imaging on the Solaris. Citation Format: Ali Behrooz, Kristine Vasquez, Peter Waterman, Jeff Meganck, Jeffrey Peterson, Peter Miller, Joshua Kempner, Wael Yared. Multispectral open-air fluorescence-guided imaging and detection of tumors using a hands-free translational platform with liquid crystal tunable filters (LCTF). [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4246.


Proceedings of SPIE | 2017

Open-air multispectral fluorescence-guided surgery platform for intraoperative detection of malignant tissue under ambient lighting conditions

Ali Behrooz; Kristine O. Vasquez; Peter Waterman; Jeff Meganck; Jeffrey D. Peterson; Peter Miller; Joshua Kempner

Intraoperative resection of tumors currently relies upon the surgeon’s ability to visually locate and palpate tumor nodules. Undetected residual malignant tissue often results in the need for additional treatment or surgical intervention. The Solaris platform is a multispectral open-air fluorescence imaging system designed for translational fluorescence-guided surgery. Solaris supports video-rate imaging in four fixed fluorescence channels ranging from visible to near infrared, and a multispectral channel equipped with a liquid crystal tunable filter (LCTF) for multispectral image acquisition (520-620 nm). Identification of tumor margins using reagents emitting in the visible spectrum (400-650 nm), such as fluorescein isothiocyanate (FITC), present challenges considering the presence of auto-fluorescence from tissue and food in the gastrointestinal (GI) tract. To overcome this, Solaris acquires LCTF-based multispectral images, and by applying an automated spectral unmixing algorithm to the data, separates reagent fluorescence from tissue and food auto-fluorescence. The unmixing algorithm uses vertex component analysis to automatically extract the primary pure spectra, and resolves the reagent fluorescent signal using non-negative least squares. For validation, intraoperative in vivo studies were carried out in tumor-bearing rodents injected with FITC-dextran reagent that is primarily residing in malignant tissue 24 hours post injection. In the absence of unmixing, fluorescence from tumors is not distinguishable from that of surrounding tissue. Upon spectral unmixing, the FITC-labeled malignant regions become well defined and detectable. The results of these studies substantiate the multispectral power of Solaris in resolving FITC-based agent signal in deep tumor masses, under ambient and surgical light, and enhancing the ability to surgically resect them.


Optics Letters | 2017

Multispectral open-air intraoperative fluorescence imaging

Ali Behrooz; Peter Waterman; Kristine O. Vasquez; Jeff Meganck; Jeffrey D. Peterson; Ilias Faqir; Joshua Kempner

Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.


Cancer Research | 2016

Abstract LB-189: Simultaneous fluorescence tomographic imaging of efficacy and toxicity following acute 5-FU treatment of HT-29 tumor xenografts

Kristine O. Vasquez; Jeffrey D. Peterson

Cancer chemotherapy can produce severe side effects such as suppression of immune function and damage to heart muscle, gastrointestinal tract, and liver. If serious enough, tissue injury can be a major reason for late stage termination of drug discovery research projects, so it is becoming more important to integrate safety/toxicology assessments earlier in the drug development process. There are a variety of traditional serum markers, tailored mechanistically to specific tissues, however there are no current non-invasive assessment tools that are capable of looking broadly at in situ biological changes in target and non-target tissue induced by chemical insult. We used non-invasive near infrared (NIR) fluorescence tomography for whole-body imaging of luciferase-expressing HT-29 human colon adenocarcinoma tumors implanted in nude mice. Both tumor and host tissue responses were imaged using a cocktail of near infrared fluorescent imaging agents, specific for cell death (Annexin-Vivo 750™ [AV750]), inflammatory matrix metalloproteases (MMPSense™ 750 FAST [MMP750]), and metabolic changes in transferrin receptor expression (Transferrin-Vivo™ 750 [TfV750]). Vascular changes were imaged using AngioSense® 680 (AS680). As a means of validating this efficacy/tox screening approach, HT-29-bearing nude mice were dosed with 5-Fluorouracil (5-FU). 5-FU has been a mainstay in the treatment of many cancers, including colorectal, but is associated with several peripheral toxicities, including gastrointestinal, hepatic, renal, vascular, and (less frequently) cardiac. Dosing was performed as a single IP bolus administration, using doses (50 and 100 mg/kg) known to have minimal overt effects on body weight or tumor mass using this acute dosing regimen. At 2h and 24h post-5-FU, independent cohorts of mice were injected IV with the AV750/MMP750/TfV 750 cocktail (AMT 750) combined with AS680. Imaging was performed 24h later. No apparent effects were seen on tumor mass with this very short treatment regimen, although there was a trend for decreased bioluminescence 2h following 5-FU. Interestingly, there was a measureable decrease in tumor vascular leak and increased AMT750 signal, in a dose- and time-dependent manner. A similar, but more dramatic, response profile was seen in the heart, suggesting rapid tissue damage and vascular changes that resolved by the later imaging timepoint. Kidneys showed enhanced AMT750/AS680 at the early timepoints; liver showed only AMT750 signal increases at the early timepoint and high dose; and lungs showed a trend of both AMT750 and AS680 increases that peaked at the early time and high dose. No obvious effects were seen in the intestines or stomach. These results agree well with observations in the literature and in patients and suggests that NIR fluorescence tomography of the reported imaging agents provides a sensitive approach to simultaneously detect both chemotherapeutic tumor efficacy and suggestions of adverse effects on tissue. Citation Format: Kristine O. Vasquez, Jeffrey D. Peterson. Simultaneous fluorescence tomographic imaging of efficacy and toxicity following acute 5-FU treatment of HT-29 tumor xenografts. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-189.

Collaboration


Dive into the Kristine O. Vasquez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge